Breaking the Habit: The Peculiar 2016 Eruption of the Unique Recurrent Nova M31N 2008-12a

Since its discovery in 2008, the Andromeda galaxy nova M31N 2008-12a has been observed in eruption every single year. This unprecedented frequency indicates an extreme object, with a massive white dwarf and a high accretion rate, which is the most promising candidate for the single-degenerate progenitor of a Type Ia supernova known to date. The previous three eruptions of M31N 2008-12a have displayed remarkably homogeneous multiwavelength properties: (i) from a faint peak, the optical light curve declined rapidly by two magnitudes in less than two days, (ii) early spectra showed initial high velocities that slowed down significantly within days and displayed clear He/N lines throughout, and (iii) the supersoft X-ray source (SSS) phase of the nova began extremely early, six days after eruption, and only lasted for about two weeks. In contrast, the peculiar 2016 eruption was clearly different. Here we report (i) the considerable delay in the 2016 eruption date, (ii) the significantly shorter SSS phase, and (iii) the brighter optical peak magnitude (with a hitherto unobserved cusp shape). Early theoretical models suggest that these three different effects can be consistently understood as caused by a lower quiescence mass accretion rate. The corresponding higher ignition mass caused a brighter peak in the free–free emission model. The less massive accretion disk experienced greater disruption, consequently delaying the re-establishment of effective accretion. Without the early refueling, the SSS phase was shortened. Observing the next few eruptions will determine whether the properties of the 2016 outburst make it a genuine outlier in the evolution of M31N 2008-12a.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  R. Hounsell,et al.  A recurrent nova super-remnant in the Andromeda galaxy , 2017, Nature.

[3]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[4]  D. Perley,et al.  Inflows, Outflows, and a Giant Donor in the Remarkable Recurrent Nova M31N 2008-12a?—Hubble Space Telescope Photometry of the 2015 Eruption , 2017, 1709.10145.

[5]  D. Perley,et al.  No Neon, but Jets in the Remarkable Recurrent Nova M31N 2008-12a?—Hubble Space Telescope Spectroscopy of the 2015 Eruption , 2017, 1708.06795.

[6]  I. Hachisu,et al.  A Self-consistent Model for a Full Cycle of Recurrent Novae—Wind Mass-loss Rate and X-Ray Luminosity , 2017, 1701.01825.

[7]  Gary J. Hill,et al.  LRS2: design, assembly, testing, and commissioning of the second-generation low-resolution spectrograph for the Hobby-Eberly Telescope , 2016, Astronomical Telescopes + Instrumentation.

[8]  N. Gehrels,et al.  M31N 2008-12a—THE REMARKABLE RECURRENT NOVA IN M31: PANCHROMATIC OBSERVATIONS OF THE 2015 ERUPTION , 2016, 1607.08082.

[9]  N. Gehrels,et al.  X-RAY FLASHES IN RECURRENT NOVAE: M31N 2008-12a AND THE IMPLICATIONS OF THE SWIFT NONDETECTION , 2016, 1607.07985.

[10]  S. Starrfield,et al.  The Thermonuclear Runaway and the Classical Nova Outburst , 2016, 1605.04294.

[11]  J. Osborne,et al.  PAN-CHROMATIC OBSERVATIONS OF THE RECURRENT NOVA LMC 2009a (LMC 1971b) , 2016, 1601.00474.

[12]  J. José Stellar Explosions: Hydrodynamics and Nucleosynthesis , 2015 .

[13]  K. Hornoch,et al.  Spectroscopic Confirmation of the 2015 Eruption of Recurrent Nova M31N 1963-09c , 2015 .

[14]  M. Darnley,et al.  A remarkable recurrent nova in M 31: The 2010 eruption recovered and evidence of a six-month period , 2015, 1508.06205.

[15]  M. Shara,et al.  GROWING WHITE DWARFS TO THE CHANDRASEKHAR LIMIT: THE PARAMETER SPACE OF THE SINGLE DEGENERATE SN Ia CHANNEL , 2015, 1508.03141.

[16]  J. Osborne Getting to know classical novae with Swift , 2015, 1507.02153.

[17]  I. Hachisu,et al.  MULTI-WAVELENGTH LIGHT CURVE MODEL OF THE ONE YEAR RECURRENCE PERIOD NOVA M31N 2008-12a , 2015, 1506.05364.

[18]  R. Smith,et al.  A remarkable recurrent nova in M31: Discovery and optical/UV observations of the predicted 2014 eruption , 2015, 1506.04202.

[19]  Martin Henze,et al.  A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays with Swift , 2015, 1504.06237.

[20]  K. Hornoch,et al.  RECURRENT NOVAE IN M31 , 2014, 1412.8510.

[21]  Iain A. Steele,et al.  SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.

[22]  Hanshin Lee,et al.  LRS2: the new facility low resolution integral field spectrograph for the Hobby-Eberly telescope , 2014, Astronomical Telescopes and Instrumentation.

[23]  K. Nomoto,et al.  SHORTEST RECURRENCE PERIODS OF NOVAE , 2014, 1404.0582.

[24]  U. Munari,et al.  The narrow and moving HeII lines in nova KT Eridani , 2014, 1403.3284.

[25]  M. Darnley,et al.  A remarkable recurrent nova in M 31: The X-ray observations , 2014, 1401.2904.

[26]  Liverpool John Moores University,et al.  A remarkable recurrent nova in M31 - The optical observations , 2014, 1401.2905.

[27]  Peter E. Nugent,et al.  AN ACCRETING WHITE DWARF NEAR THE CHANDRASEKHAR LIMIT IN THE ANDROMEDA GALAXY , 2014, 1401.2426.

[28]  J. Greiner,et al.  X-ray monitoring of classical novae in the central region of M 31 III. Autumn and winter 2009/10, 2010/11, and 2011/12 , 2013, 1312.1241.

[29]  S. Scaringi A physical model for the flickering variability in cataclysmic variables , 2013, 1311.6814.

[30]  M. Kasliwal,et al.  A Candidate Recurrent Nova in M31 from iPTF , 2013 .

[31]  J. Brooks,et al.  HYDROGEN BURNING ON ACCRETING WHITE DWARFS: STABILITY, RECURRENT NOVAE, AND THE POST-NOVA SUPERSOFT PHASE , 2013, 1309.3375.

[32]  L. Dressel Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0 , 2012 .

[33]  Mamoru Doi,et al.  KWFC: four square degrees camera for the Kiso Schmidt Telescope , 2012, Other Conferences.

[34]  M. Valle,et al.  U Scorpii 2010 outburst: a new understanding of the binary accretion disk and the secondary star , 2012, 1207.0424.

[35]  M. Valle,et al.  X-ray monitoring of classical novae in the central region of M 31 - II. Autumn and winter 2007/2008 and 2008/2009 , 2010, 1010.1461.

[36]  J. Greiner,et al.  X-ray monitoring of classical novae in the central region of M 31 I. June 2006 - March 2007 ? , 2010, 1009.1644.

[37]  B. Schaefer COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.

[38]  W. Pietsch,et al.  X‐ray emission from optical novae in M 31 , 2009, 0910.3865.

[39]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[40]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[41]  Ian S. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy II , 2008 .

[42]  Barcelona,et al.  The recurrent nova RS Oph: A possible scenario for type Ia supernovae , 2008, 0807.3255.

[43]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[44]  E. Kerins,et al.  The Angstrom Project Alert System: Real-Time Detection of Extragalactic Microlensing , 2006, astro-ph/0612704.

[45]  R. Bender,et al.  X-ray monitoring of optical novae in M 31 from July 2004 to February 2005 , 2006, astro-ph/0612596.

[46]  I. Hachisu,et al.  A Universal Decline Law of Classical Novae , 2006, astro-ph/0607609.

[47]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[48]  R. C. Smith,et al.  A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33 , 2006, astro-ph/0602128.

[49]  G. Sala,et al.  Models for the soft X-ray emission of post-outburst classical novae , 2005, astro-ph/0504353.

[50]  Astronomy,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005, astro-ph/0503143.

[51]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[52]  R. Honeycutt,et al.  Characteristics of High-State/Low-State Transitions in VY Sculptoris Stars , 2004 .

[53]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[54]  Michael R. Garcia,et al.  A Synoptic X-Ray Study of M31 with the Chandra High Resolution Camera , 2003, astro-ph/0306421.

[55]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[56]  Los Alamos National Lab,et al.  The XMM-Newton optical/UV monitor telescope , 2000, astro-ph/0011216.

[57]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[58]  J. Bartlett,et al.  The ALADIN interactive sky atlas - A reference tool for identification of astronomical sources , 2000, astro-ph/0002109.

[59]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[60]  J. Truran,et al.  Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities , 1998 .

[61]  J. Cannizzo,et al.  Low States in Cataclysmic Variables , 1998 .

[62]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[63]  B. Warner Cataclysmic Variable Stars by Brian Warner , 1995 .

[64]  P. Giommi,et al.  RX J0045.4+4154: A Recurrent Supersoft X-Ray Transient in M31 , 1995 .

[65]  R. Hudec,et al.  Operational testing of the SBIG ST-6 CCD camera , 1994 .

[66]  M. Livio,et al.  STAR SPOTS AND THE PERIOD GAP IN CATACLYSMIC VARIABLES , 1994 .

[67]  D. McCammon,et al.  Photoelectric absorption cross sections with variable abundances , 1992 .

[68]  ROBERT E. Williams,et al.  The Formation of Novae Spectra , 1992 .

[69]  Carl Heiles,et al.  The bell laboratories H I survey , 1992 .

[70]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[71]  M. Hamuy,et al.  Multiwavelength Observations of Nova LMC 1990 Number 2: The First Extragalactic Recurrent Nova , 1991 .

[72]  B. Madore,et al.  An empirical test for the metallicity sensitivity of the Cepheid period-luminosity relation , 1990 .

[73]  B. Schaefer Orbital periods of recurrent novae , 1990 .

[74]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[75]  T. Marsh THE EXTRACTION OF HIGHLY DISTORTED SPECTRA , 1989 .

[76]  J. Truran,et al.  Recurrent novae as a consequence of the accretion of solar material onto a 1. 38 M/sub sun/ white dwarf , 1985 .

[77]  P. Szkody,et al.  TT Arietis: the low state , 1985 .

[78]  E. L. Robinson,et al.  MV Lyrae - Spectrophotometric properties of minimum light; or on MV Lyrae off , 1981 .

[79]  U. Briel,et al.  The Rosat mission , 1981 .

[80]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[81]  S. Chandrasekhar The maximum mass of ideal white dwarfs , 1931 .

[82]  E. Hubble,et al.  No. 376. A spiral nebula as a stellar system. Messier 31. , 1929 .

[83]  G. W. Ritchey NOVAE IN SPIRAL NEBULAE , 1917 .

[84]  P. Fedorov,et al.  Catalogue : absolute proper motions of 280 million stars , 2009 .

[85]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[86]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[87]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[88]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[89]  D. Egret,et al.  The simbad astronomical database , 1991 .