A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE
暂无分享,去创建一个
Benjamin Stamm | Lin Lin | Lin Lin | B. Stamm
[1] Mark Ainsworth,et al. Technical Note: A note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes , 2012 .
[2] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[3] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[4] Charbel Farhat,et al. Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..
[5] D. Sánchez-Portal,et al. Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.
[6] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[7] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[8] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[9] Michael J. Frisch,et al. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .
[10] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[11] G. A. Baker. Finite element methods for elliptic equations using nonconforming elements , 1977 .
[12] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[13] B. Rivière,et al. Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .
[14] Dominik Schötzau,et al. A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .
[15] Ralf Hiptmair,et al. Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..
[16] Mario Ohlberger,et al. A-Posteriori Error Estimates for the Localized Reduced Basis Multi-Scale Method , 2014 .
[17] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[18] E Weinan,et al. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..
[19] Benjamin Stamm,et al. hp-Optimal discontinuous Galerkin methods for linear elliptic problems , 2010, Math. Comput..
[20] Stefano Giani,et al. An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems , 2012 .
[21] J. Oden,et al. A discontinuous hp finite element method for convection—diffusion problems , 1999 .
[22] D. Schötzau,et al. ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .
[23] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[24] Charbel Farhat,et al. Three‐dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid‐frequency Helmholtz problems , 2006 .
[25] Patrick Henning,et al. Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems , 2014, Discrete & Continuous Dynamical Systems - S.
[26] Chao Yang,et al. A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory , 2014, 1401.0920.
[27] Mario Ohlberger,et al. A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..
[28] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[29] I. Babuska,et al. Nonconforming Elements in the Finite Element Method with Penalty , 1973 .
[30] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .