A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE

We present the first systematic work for deriving a posteriori error estimates for general non-polynomial basis functions in an interior penalty discontinuous Galerkin (DG) formulation for solving second order linear PDEs. Our residual type upper and lower bound error estimates measure the error in the energy norm. The main merit of our method is that the method is parameter-free, in the sense that all but one solution-dependent constants appearing in the upper and lower bound estimates are explicitly computable by solving local eigenvalue problems, and the only non-computable constant can be reasonably approximated by a computable one without affecting the overall effectiveness of the estimates in practice. As a side product of our formulation, the penalty parameter in the interior penalty formulation can be automatically determined as well. We develop an efficient numerical procedure to compute the error estimators. Numerical results for a variety of problems in 1D and 2D demonstrate that both the upper bound and lower bound are effective.esaim

[1]  Mark Ainsworth,et al.  Technical Note: A note on the selection of the penalty parameter for discontinuous Galerkin finite element schemes , 2012 .

[2]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[3]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[4]  Charbel Farhat,et al.  Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..

[5]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[6]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[7]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[8]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[9]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[10]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[11]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[12]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[13]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[14]  Dominik Schötzau,et al.  A robust a-posteriori error estimator for discontinuous Galerkin methods for convection--diffusion equations , 2009 .

[15]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[16]  Mario Ohlberger,et al.  A-Posteriori Error Estimates for the Localized Reduced Basis Multi-Scale Method , 2014 .

[17]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[18]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[19]  Benjamin Stamm,et al.  hp-Optimal discontinuous Galerkin methods for linear elliptic problems , 2010, Math. Comput..

[20]  Stefano Giani,et al.  An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems , 2012 .

[21]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[22]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[23]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[24]  Charbel Farhat,et al.  Three‐dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid‐frequency Helmholtz problems , 2006 .

[25]  Patrick Henning,et al.  Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems , 2014, Discrete & Continuous Dynamical Systems - S.

[26]  Chao Yang,et al.  A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory , 2014, 1401.0920.

[27]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[28]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[29]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[30]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .