Electro-aeromechanical modelling of actuated membrane wings

Abstract This paper presents a numerical investigation on the aeromechanical performance of dynamically actuated membrane wings made of dielectric elastomers. They combine the advantages of membrane shape adaptability, which produces increased lift and delayed stall, with the benefits of simple, lightweight but high-authority control mechanism offered by integral actuation. High-fidelity numerical models have been developed to predict their performance and include a fluid solver based on the direct numerical integration of the unsteady Navier–Stokes equations, an electromechanical constitutive material model and a non-linear membrane structural model. Numerical results show that harmonic actuation can either increase or reduce the overall aerodynamic efficiency of the wing, measured as the mean lift-to-drag ratio, depending on the ratio between the actuation frequency and the natural frequency of the membrane. In addition, the definition of a reduced-order model based on POD modes of the complete high-fidelity system provides an insight of the main characteristics of the dynamics of the coupled system.

[1]  Azzeddine Soulaïmani,et al.  Investigations of nonlinear aeroelasticity using a reduced order fluid model based on POD method , 2007 .

[2]  P. Steinmann,et al.  Experimental study and numerical modelling of VHB 4910 polymer , 2012 .

[3]  Ismet Gursul,et al.  Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils , 2009 .

[4]  Rafael Palacios,et al.  Leading- and trailing-edge effects on the aeromechanics of membrane aerofoils , 2013 .

[5]  Ismet Gursul,et al.  Flow-induced vibrations of low aspect ratio rectangular membrane wings , 2011 .

[6]  D. Clarke,et al.  Tunable lenses using transparent dielectric elastomer actuators. , 2013, Optics express.

[7]  Erwan Liberge,et al.  Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder , 2010 .

[8]  Yongsheng Lian,et al.  Proper Orthogonal Decomposition for Three-Dimensional Membrane Wing Aerodynamics , 2003 .

[9]  Wei Shyy,et al.  Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil , 2006 .

[10]  Daniella E. Raveh,et al.  Reduced-Order Models for Nonlinear Unsteady Aerodynamics , 2001 .

[11]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[12]  Ismet Gursul,et al.  Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers , 2009 .

[13]  Sondipon Adhikari,et al.  Linear system identification using proper orthogonal decomposition , 2007 .

[14]  C. Suchocki A finite element implementation of Knowles stored-energy function: theory, coding and applications , 2011 .

[15]  R. Arieli,et al.  Parametric Study of a Two-dimensional Membrane Wing in Viscous Laminar Flow , 2011 .

[16]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[17]  Javier Bonet,et al.  Large strain viscoelastic constitutive models , 2001 .

[18]  A. Bergamini,et al.  Multiaxial Mechanical Characterization of Interpenetrating Polymer Network Reinforced Acrylic Elastomer , 2011 .

[19]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[20]  N. C. Goulbourne,et al.  Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes , 2009 .

[21]  Wei Shyy,et al.  Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring , 2008 .

[22]  Vladimir Buljak,et al.  Inverse Analyses with Model Reduction , 2012 .

[23]  Bharathram Ganapathisubramani,et al.  Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers , 2015 .

[24]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[25]  Wei Shyy,et al.  Computational model of flexible membrane wings in steady laminar flow , 1995 .

[26]  Edoardo Mazza,et al.  Electromechanical coupling in dielectric elastomer actuators , 2007 .

[27]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[28]  Henrik Hesse,et al.  Reduced-Order Aeroelastic Models for Dynamics of Maneuvering Flexible Aircraft , 2014 .

[29]  N. C. Goulbourne,et al.  On the dynamic electromechanical loading of dielectric elastomer membranes , 2008 .

[30]  Raymond E. Gordnier,et al.  High fidelity computational simulation of a membrane wing airfoil , 2008 .

[31]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[32]  Z. Suo Theory of dielectric elastomers , 2010 .

[33]  Z. Suo,et al.  Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers , 2012 .

[34]  Rye M. Waldman,et al.  Aerodynamic Characterization of a Wing Membrane with Variable Compliance , 2014 .

[35]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[36]  O. von Helversen,et al.  The energy cost of flight: do small bats fly more cheaply than birds? , 1998, Journal of Comparative Physiology B.

[37]  W. Oates,et al.  Aerodynamic control of micro air vehicle wings using electroactive membranes , 2013 .

[38]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[39]  Earl H. Dowell,et al.  A reduced order system ID approach to the modelling of nonlinear structural behavior in aeroelasticity , 2005 .

[40]  B. G. Newman,et al.  Aerodynamic theory for membranes and sails , 1987 .

[41]  H. Langtangen,et al.  Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. , 2011, Journal of biomechanics.

[42]  J. W. Fox,et al.  Electromechanical Characterization of the Static and Dynamic Response of Dielectric Elastomer Membranes , 2007 .

[43]  Wei Shyy,et al.  Membrane wing aerodynamics for micro air vehicles , 2003 .