A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films

[1]  Jaebeom Lee,et al.  Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget , 2017 .

[2]  A. Toriumi,et al.  Kinetic pathway of the ferroelectric phase formation in doped HfO2 films , 2017 .

[3]  C. Hwang,et al.  Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. , 2017, Nanoscale.

[4]  J. V. Houdt,et al.  Understanding ferroelectric Al:HfO2 thin films with Si-based electrodes for 3D applications , 2017 .

[5]  U. Schroeder,et al.  Ferroelectric and piezoelectric properties of Hf1-xZrxO2 and pure ZrO2 films , 2017 .

[6]  Johannes Müller,et al.  A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide , 2016 .

[7]  Weidong Wu,et al.  Enhanced quantum interference transport in gold films with random antidot arrays , 2016 .

[8]  Osami Sakata,et al.  The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film , 2016, Scientific Reports.

[9]  Stefan Slesazeck,et al.  Physical Mechanisms behind the Field‐Cycling Behavior of HfO2‐Based Ferroelectric Capacitors , 2016 .

[10]  H. Funakubo,et al.  Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films , 2016 .

[11]  S. Polyakov,et al.  Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks , 2016 .

[12]  C. Hwang,et al.  A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. , 2016, Nanoscale.

[13]  Cheol Seong Hwang,et al.  Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling , 2015 .

[14]  Christoph Adelmann,et al.  Stabilizing the ferroelectric phase in doped hafnium oxide , 2015 .

[15]  A. Kersch,et al.  The Origin of Ferroelectricity in Hf$_{x}$ Zr$_{1-x}$ O$_2$: A Computational Investigation and a Surface Energy Model , 2015, 1507.00588.

[16]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[17]  Amit Kumar,et al.  Ferroelectricity in Si‐Doped HfO2 Revealed: A Binary Lead‐Free Ferroelectric , 2014, Advanced materials.

[18]  Thomas Mikolajick,et al.  Electric field cycling behavior of ferroelectric hafnium oxide. , 2014, ACS applied materials & interfaces.

[19]  Takahiro Oikawa,et al.  Study on the effect of heat treatment conditions on metalorganic-chemical-vapor-deposited ferroelectric Hf0.5Zr0.5O2 thin film on Ir electrode , 2014 .

[20]  C. Hwang,et al.  Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes , 2014 .

[21]  Rampi Ramprasad,et al.  Pathways towards ferroelectricity in hafnia , 2014, 1407.1008.

[22]  C. Hwang,et al.  The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity , 2014 .

[23]  Sergei V. Kalinin,et al.  Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories , 2013, 2013 IEEE International Electron Devices Meeting.

[24]  Christoph Adelmann,et al.  Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories , 2013, 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[25]  C. Hwang,et al.  Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature , 2013 .

[26]  Qiang Zhu,et al.  New developments in evolutionary structure prediction algorithm USPEX , 2013, Comput. Phys. Commun..

[27]  C. Hwang,et al.  Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes , 2013 .

[28]  Chang-Beom Eom,et al.  Thin-film piezoelectric MEMS , 2012 .

[29]  Lothar Frey,et al.  Ferroelectricity in Simple Binary ZrO2 and HfO2. , 2012, Nano letters.

[30]  Thomas Mikolajick,et al.  Incipient Ferroelectricity in Al‐Doped HfO2 Thin Films , 2012 .

[31]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[32]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[33]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[34]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[35]  S. Raoux,et al.  Size-dependent polar ordering in colloidal GeTe nanocrystals. , 2011, Nano letters.

[36]  J. Perez-Mato,et al.  A new computer tool at the Bilbao Crystallographic Server to detect and characterize pseudosymmetry , 2011 .

[37]  Mario Valle,et al.  How to predict very large and complex crystal structures , 2010, Comput. Phys. Commun..

[38]  R. Ramesh Ferroelectrics: A new spin on spintronics. , 2010, Nature materials.

[39]  J. Íñiguez,et al.  Ab Initio indications for giant magnetoelectric effects driven by structural softness. , 2010, Physical review letters.

[40]  P. McIntyre,et al.  Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films , 2009 .

[41]  J. Perez-Mato,et al.  AMPLIMODES: symmetry‐mode analysis on the Bilbao Crystallographic Server , 2009 .

[42]  V. Cros,et al.  Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. , 2009, Physical review letters.

[43]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[44]  C. Hwang,et al.  First-principles study on doping and phase stability of HfO2 , 2008 .

[45]  S. Khalid,et al.  Cubic phase stabilization in nanoparticles of hafnia-zirconia oxides: Particle-size and annealing environment effects , 2008 .

[46]  M. Glinchuk,et al.  Phase transitions induced by confinement of ferroic nanoparticles , 2007, cond-mat/0703652.

[47]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[48]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[49]  D. Vollath,et al.  Phases and phase transformations in nanocrystalline ZrO2 , 2006 .

[50]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[51]  Harold T. Stokes,et al.  FINDSYM: program for identifying the space‐group symmetry of a crystal , 2005 .

[52]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[53]  T. Kikegawa,et al.  Phase Relations and Volume Changes of Hafnia under High Pressure and High Temperature , 2004 .

[54]  K. K. Shung,et al.  A comparison of model and experiment for a high frequency (35 MHz) linear ultrasonic array , 2003, IEEE Symposium on Ultrasonics, 2003.

[55]  D. Vanderbilt,et al.  Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure , 2003, cond-mat/0306205.

[56]  Y. Kawazoe,et al.  Critical Size of the Phase Transition from Cubic to Tetragonal in Pure Zirconia Nanoparticles , 2003 .

[57]  W. Lee,et al.  (111)-Specific Coalescence Twinning and Martensitic Transformation of Tetragonal ZrO2 Condensates , 2001 .

[58]  Wataru Utsumi,et al.  Phase relations and equations of state of ZrO 2 under high temperature and high pressure , 2001 .

[59]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[60]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[61]  W. M. Rainforth,et al.  Intermediate rhombohedral (r-ZrO2) phase formation at the surface of sintered Y-TZP's , 1997 .

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[64]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[65]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[66]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[67]  E. Kisi,et al.  Crystal Structures of Two Orthorhombic Zirconias , 1991 .

[68]  R. J. Hill,et al.  Crystal Structure of Orthorhombic Zirconia in Partially Stabilized Zirconia , 1989 .

[69]  H. Hasegawa,et al.  Cubic-to-rhombohedral phase transformation in zirconia by ion implantation , 1985 .

[70]  Hasegawa Hideo Rhombohedral phase produced in abraded surfaces of partially stabilized zirconia (PSZ) , 1983 .

[71]  I. P. Batra,et al.  Depolarization-Field-Induced Instability in Thin Ferroelectric Films-Experiment and Theory , 1973 .

[72]  I. P. Batra,et al.  Phase Transition, Stability, and Depolarization Field in Ferroelectric Thin Films , 1973 .

[73]  L. Komissarova,et al.  Phase equilibria in the HfO2-Sc2O3 system , 1969 .

[74]  U. Böttger,et al.  Chemical Solution Deposition of Ferroelectric Hafnium Oxide for Future Lead Free Ferroelectric Devices , 2015 .

[75]  A. U.S.,et al.  Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials , 2010 .

[76]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .

[77]  Alexander A. Demkov,et al.  Materials Fundamentals of Gate Dielectrics , 2005 .

[78]  Dr. F. D’Alessandro A Modern Perspective , 2003 .

[79]  H. Hasegawa Rhombohedral phase produced in abraded surfaces of partially stabilized zirconia (PSZ) , 1983 .