The Herschel Virgo Cluster Survey - IX. Dust-to-gas mass ratio and metallicity gradients in four Virgo spiral galaxies

Context. Using Herschel data from the Open Time Key Project the Herschel Virgo Cluster Survey (HeViCS) , we investigated the relationship between the metallicity gradients expressed by metal abundances in the gas phase as traced by the chemical composition of HII regions, and in the solid phase, as traced by the dust-t o-gas mass ratio. Aims. We derived the radial gradient of the dust-to-gas mass ratio for all galaxies observed by HeViCS whose metallicity gradients are available in the literature. They are all late type Sbc ga laxies, namely NGC4254, NGC4303, NGC4321, and NGC4501. Methods. We fitted PACS and SPIRE observations with a single-temperat ure modified blackbody, inferred the dust mass, and calculated two dimensional maps of the dust-to-gas mass ratio, with the total mass of gas from available HI and CO maps. HI moment-1 maps were used to derive the geometric parameters of the galaxies and extract the radial profiles. We examined di fferent dependencies on metallicity of the CO-to-H2 conversion factor (XCO ), used to transform the 12 CO observations into the amount of molecular hydrogen. Results. We found that in these galaxies the dust-to-gas mass ratio radial profile is extremely sensitive to choice of the XCO value, since the molecular gas is the dominant component in the inner parts. We found that for three galaxies of our sample, namely NGC4254, NGC4321, and NGC4501, the slopes of the oxygen and of the dust-to-gas radial gradients agree up to∼0.6-0.7R25 using XCO values in the range 1/3-1/2 Galactic XCO . For NGC4303 a lower value of XCO∼0.1× 10 20 is necessary. Conclusions. We suggest that such low XCO values might be due to a metallicity dependence of XCO (from close to linear for NGC4254, NGC4321, and NGC4501 to superlinear for NGC4303),especially in the radial regions RG <0.6-0.7R25 where the molecular gas dominates. On the other hand, the outer regions, where the atomic gas component is dominant, are less affected by the choice of XCO , and thus we cannot put constraints on its value.

[1]  G. J. Bendo,et al.  The Herschel Virgo Cluster Survey – VIII. The Bright Galaxy Sample★ , 2011, 1110.2869.

[2]  N. Kuno,et al.  Refined molecular gas mass and star-formation efficiency in NGC 3627 , 2011 .

[3]  R. B. Barreiro,et al.  Planck early results. XXI. Properties of the interstellar mediumin the Galactic plane , 2011, 1101.2032.

[4]  L. Kewley,et al.  GAS-PHASE OXYGEN GRADIENTS IN STRONGLY INTERACTING GALAXIES. I. EARLY-STAGE INTERACTIONS , 2010, 1009.0761.

[5]  P. Bernardis,et al.  Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane , 2010, 1009.2779.

[6]  Jr.,et al.  OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES , 2010, 1007.4547.

[7]  L. Stanghellini,et al.  The population of planetary nebulae and H II regions in M 81 - A study of radial metallicity gradients and chemical evolution , 2010, 1006.4076.

[8]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[9]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[10]  G. Gavazzi,et al.  The Herschel Virgo Cluster Survey. IV. Resolved dust analysis of spiral galaxies , 2010, 1005.3057.

[11]  M. Sauvage,et al.  Dust/gas correlations from Herschel observations , 2010, 1005.2537.

[12]  D. L. Clements,et al.  Herschel : the first science highlights Special feature L E Mapping the interstellar medium in galaxies with Herschel ! / SPIRE , 2010 .

[13]  D. L. Clements,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel Space Observatory view of dust in M 81 , 2010 .

[14]  M. Sauvage,et al.  The Herschel Reference Survey , 2010, 1001.5136.

[15]  D. L. Clements,et al.  The JCMT Nearby Galaxies Legacy Survey – III. Comparisons of cold dust, polycyclic aromatic hydrocarbons, molecular gas and atomic gas in NGC 2403 , 2009, 0911.3369.

[16]  Bernd Vollmer,et al.  VLA IMAGING OF VIRGO SPIRALS IN ATOMIC GAS (VIVA). I. THE ATLAS AND THE H i PROPERTIES , 2009 .

[17]  J. Young,et al.  12CO(J = 1 − 0) ON-THE-FLY MAPPING SURVEY OF THE VIRGO CLUSTER SPIRALS. I. DATA AND ATLAS , 2009, 0910.3465.

[18]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[19]  F. Israel CI and CO in nearby galaxy centers - The star-burst galaxies NGC 278, NGC 660, NGC 3628, NGC 4631, and NGC 4666 , 2009, 0908.3586.

[20]  Laboratoire d'Astrophysique de Marseille,et al.  RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. II. DERIVED DUST PROPERTIES , 2009, 0909.2658.

[21]  A. Bolatto,et al.  THE STRUCTURE OF A LOW-METALLICITY GIANT MOLECULAR CLOUD COMPLEX , 2009, 0907.2240.

[22]  H. Kaneda,et al.  Far-Infrared Properties of Blue Compact Dwarf Galaxies Observed with AKARI/Far-Infrared Surveyor (FIS) , 2008, 0809.0552.

[23]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[24]  Nicolas Grevesse,et al.  Solar‐system abundances of the elements: A new table , 2008 .

[25]  Kraków,et al.  Pre-peak ram pressure stripping in the Virgo cluster spiral galaxy NGC 4501 , 2008, 0801.4874.

[26]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[27]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[28]  D. Calzetti,et al.  Ultraviolet and Infrared Diagnostics of Star Formation and Dust in NGC 7331 , 2007 .

[29]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[30]  A. Hirota,et al.  Nobeyama CO Atlas of Nearby Spiral Galaxies: Distribution of Molecular Gas in Barred and Nonbarred Spiral Galaxies , 2007, 0705.2678.

[31]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[32]  Japan.,et al.  The Virgo High-Resolution CO Survey: VI. Gas Dynamics and Star Formation along the Bar in NGC 4303 , 2006, astro-ph/0603287.

[33]  M. R. Haas,et al.  Abundance Gradients in the Galaxy , 2006 .

[34]  G. Gavazzi,et al.  Environmental Effects on Late‐Type Galaxies in Nearby Clusters , 2006, astro-ph/0601108.

[35]  Hawaii,et al.  CI and CO in the center of M 51 , 2005, astro-ph/0509492.

[36]  T. Thuan,et al.  Oxygen Abundance Determination in H II Regions: The Strong Line Intensities-Abundance Calibration Revisited , 2005 .

[37]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[38]  A. Boselli,et al.  The radial extinction profiles of late-type galaxies , 2004, astro-ph/0407617.

[39]  D. A. Green,et al.  The distribution of atomic gas and dust in nearby galaxies – III. Radial distributions and metallicity gradients , 2004 .

[40]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[41]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[42]  A. Inoue Evolution of Dust-to-Metal Ratio in Galaxies , 2003, astro-ph/0308204.

[43]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[44]  P. Caselli,et al.  Dust emissivity in the submm/mm SCUBA and SIMBA observations of Barnard 68 , 2003 .

[45]  Y. Sofue,et al.  The Virgo High-Resolution CO Survey: III. NGC 4254 , 2003, astro-ph/0301010.

[46]  Dust and molecules in the Local Group galaxy NGC 6822. III. The first-ranked HII region complex Hubble V , 2002, astro-ph/0210154.

[47]  L. Dunne,et al.  SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass , 2002, astro-ph/0204519.

[48]  G. Gavazzi,et al.  Molecular gas in normal late-type galaxies ? , 2002 .

[49]  Cambridge,et al.  New Light on the Search for Low-Metallicity Galaxies , 2001, astro-ph/0110356.

[50]  L. Pilyugin Oxygen abundances in dwarf irregular galaxies and the metallicity-luminosity relationship , 2001, astro-ph/0105360.

[51]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[52]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[53]  G. P. Forêts,et al.  Molecular Hydrogen in Space: Observations and Models , 2000 .

[54]  H Germany,et al.  Molecular gas in blue compact dwarf galaxies , 2000, astro-ph/0005311.

[55]  V. Reshetnikov The milky way as a galaxy , 2000 .

[56]  F. Israel Extragalactic H2 and its variable relation to CO , 2000, astro-ph/0001250.

[57]  Heidelberg,et al.  The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully—Fisher distance determinations , 1998, astro-ph/9812275.

[58]  R. Terlevich,et al.  Carbon in Spiral Galaxies from HUBBLE SPACE TELESCOPE Spectroscopy , 1998, astro-ph/9810026.

[59]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[60]  A. Ferrara,et al.  Dust-to-Gas Ratio and Metal Abundance in Dwarf Galaxies , 1997, astro-ph/9705037.

[61]  Takuji Tsujimoto,et al.  CO-to-H2 Conversion Factor in Galaxies , 1996 .

[62]  D. Zaritsky,et al.  Chemical abundances in Virgo spiral galaxies. II. Effects of cluster environment , 1995, astro-ph/9511019.

[63]  C. D. Wilson,et al.  The Metallicity Dependence of the CO-to-H2 Conversion Factor from Observations of Local Group Galaxies , 1995, astro-ph/9506103.

[64]  Samuel Harvey Moseley,et al.  LARGE-SCALE CHARACTERISTICS OF INTERSTELLAR DUST FROM COBE DIRBE OBSERVATIONS , 1994 .

[65]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[66]  R. Allen,et al.  Spiral Density Wave Theory, Corotation Resonance, and the Velocity Field of NGC 4321 , 1993 .

[67]  Lee G. Mundy,et al.  NGC 4254: A Spiral Galaxy with an M = 1 Mode and Infalling Gas , 1993 .

[68]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[69]  R. Kennicutt,et al.  High chemical abundances in Virgo spiral galaxies , 1991 .

[70]  J. Gorkom,et al.  VLA observations of neutral hydrogen in Virgo Cluster galaxies. I. The Atlas , 1990 .

[71]  Judith S. Young,et al.  CO observations of all Virgo Cluster spiral galaxies brighter than BTo=12 , 1988 .

[72]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[73]  T. Graauw,et al.  Carbon Monoxide in the Magellanic Clouds , 1986 .

[74]  A. Sandage,et al.  Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. , 1985 .

[75]  G. A. Shields,et al.  The chemistry of galaxies. I. The nature of giant extragalactic H II regions. , 1985 .

[76]  G. Bignami,et al.  Gamma-rays from atomic and molecular gas in the first galactic quadrant , 1983 .