Tutte polynomials computable in polynomial time

Abstract We show that for any accessible class of matroids of bounded width, the Tutte polynomial is computable in polynomial time.

[1]  D. Welsh,et al.  The computational complexity of matroid properties , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[3]  Paul D. Seymour,et al.  Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.

[4]  Tom Brylawski,et al.  A combinatorial model for series-parallel networks , 1971 .

[5]  Paul D. Seymour,et al.  On minors of non-binary matroids , 1981, Comb..

[6]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[7]  H. Crapo,et al.  The Tutte polynomial , 1969, 1707.03459.

[8]  J. Scott Provan,et al.  The Complexity of Reliability Computations in Planar and Acyclic Graphs , 1986, SIAM J. Comput..

[9]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[11]  William T. Tutte,et al.  A theory of 3-connected graphs , 1961 .