A mm-Wave Stub-Loaded ECPW Wilkinson Power Divider/Combiner in 90 nm CMOS

This letter presents a millimeter-wave (mm-wave) slow-wave elevated coplanar waveguide (ECPW) power divider/combiner fabricated in the back-end-of-the-line (BEOL) of a 90 nm CMOS technology. Design techniques using periodical loading stubs and elevated signal conductors are applied toward the CPWs that enable i) an aggressive size-reduction by increasing the artificial effective dielectric constant <formula formulatype="inline"><tex Notation="TeX">$(\varepsilon_{{\rm eff}})$</tex></formula> ii) realization of high-impedance transmission lines at mm-wave. The measurement results reveal that the insertion loss is 2.3 and 2.4 dB at 60 and 67 GHz, respectively. The measured isolation of over 13 dB is observed from 59 GHz to at least 110 GHz. The divider also achieves an excellent amplitude imbalance and phase imbalance of less than 0.16 dB and less than 0.45<formula formulatype="inline"> <tex Notation="TeX">$^{\circ}$</tex></formula>, respectively, up to 67 GHz (limited by test setup). The core size of the proposed divider is only 205 <formula formulatype="inline"><tex Notation="TeX">$\mu$</tex></formula>m <formula formulatype="inline"> <tex Notation="TeX">${\times}$</tex></formula>250 <formula formulatype="inline"> <tex Notation="TeX">$\mu$</tex></formula>m (0.051 mm<formula formulatype="inline"> <tex Notation="TeX">$^{{{2}}}$</tex></formula>) equivalent to a size-reduction of over 70% compared to a conventional Wilkinson power divider. To the best of authors' knowledge, this is the first Wilkinson power divider/combiner that has demonstrated the highest operating frequency characterized among all other known semiconductor technologies reported.

[1]  Ching-Hsing Luo,et al.  Miniature 60 GHz slow-wave CPW branch-line coupler using 90 nm digital CMOS process , 2011 .

[2]  Meng-Ju Chiang,et al.  Ka-Band CMOS Hybrids Miniaturization Incorporating Multilayer Synthetic Quasi-TEM Transmission Lines , 2008, 2008 38th European Microwave Conference.

[3]  Chao-Wei Wang,et al.  A miniaturized power combiner for compact design of CMOS phase shifter at K-Band , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[4]  G. Ponchak,et al.  Miniaturized Wilkinson power dividers utilizing capacitive loading , 2002, IEEE Microwave and Wireless Components Letters.

[5]  Yo-Sheng Lin,et al.  Wideband mixed lumped-distributed-element 90° and 180° power splitters on silicon substrate for millimeter-wave applications , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  Gabriel M. Rebeiz,et al.  Miniature Four-Way and Two-Way 24 GHz Wilkinson Power Dividers in 0.13 $\mu$m CMOS , 2007, IEEE Microwave and Wireless Components Letters.

[7]  Ichihiko Toyoda,et al.  Miniaturized Wilkinson power divider using three-dimensional MMIC technology , 1996 .

[8]  W. Heinrich,et al.  High-impedance coplanar waveguides with low attenuation , 1996 .

[9]  A.P. Freundorfer,et al.  Broadband folded Wilkinson power combiner/splitter , 2004, IEEE Microwave and Wireless Components Letters.

[10]  Da-Chiang Chang,et al.  Experimental Analysis of a 60 GHz Compact EC-CPW Branch-Line Coupler for mm-Wave CMOS Radios , 2010, IEEE Microwave and Wireless Components Letters.

[11]  M.E. Zaghloul,et al.  Micromachined 28-GHz power divider in CMOS technology , 2000, IEEE Microwave and Guided Wave Letters.

[12]  Kae-Oh Sun,et al.  A compact branch-line coupler using discontinuous microstrip lines , 2005 .