Phylogeography of Francisella tularensis: Global Expansion of a Highly Fit Clone

ABSTRACT Francisella tularensis contains several highly pathogenic subspecies, including Francisella tularensis subsp. holarctica, whose distribution is circumpolar in the northern hemisphere. The phylogeography of these subspecies and their subclades was examined using whole-genome single nucleotide polymorphism (SNP) analysis, high-density microarray SNP genotyping, and real-time-PCR-based canonical SNP (canSNP) assays. Almost 30,000 SNPs were identified among 13 whole genomes for phylogenetic analysis. We selected 1,655 SNPs to genotype 95 isolates on a high-density microarray platform. Finally, 23 clade- and subclade-specific canSNPs were identified and used to genotype 496 isolates to establish global geographic genetic patterns. We confirm previous findings concerning the four subspecies and two Francisella tularensis subsp. tularensis subpopulations and identify additional structure within these groups. We identify 11 subclades within F. tularensis subsp. holarctica, including a new, genetically distinct subclade that appears intermediate between Japanese F. tularensis subsp. holarctica isolates and the common F. tularensis subsp. holarctica isolates associated with the radiation event (the B radiation) wherein this subspecies spread throughout the northern hemisphere. Phylogenetic analyses suggest a North American origin for this B-radiation clade and multiple dispersal events between North America and Eurasia. These findings indicate a complex transmission history for F. tularensis subsp. holarctica.

[1]  Possession, use, and transfer of select agents and toxins. Final rule. , 2005, Federal register.

[2]  P. Keim,et al.  Molecular Epidemiology, Evolution, and Ecology of Francisella , 2007, Annals of the New York Academy of Sciences.

[3]  P. Keim,et al.  Specific detection of bacillus anthracis using a TaqMan mismatch amplification mutation assay. , 2005, BioTechniques.

[4]  W. Thilly,et al.  Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. , 1992, PCR methods and applications.

[5]  I. Meshcheryakova,et al.  Subspecific Taxonomy of Francisella tularensis McCoy and Chapin 1912 , 1983 .

[6]  S. Francesconi,et al.  Molecular analysis of Francisella tularensis subspecies tularensis and holarctica. , 2007, American journal of clinical pathology.

[7]  A. Vogler,et al.  An optimized, multiplexed multi‐locus variable‐number tandem repeat analysis system for genotyping Francisella tularensis , 2009, Letters in applied microbiology.

[8]  Lynn Y. Huynh,et al.  Global Genetic Population Structure of Bacillus anthracis , 2007, PloS one.

[9]  M. Pallen,et al.  Genome Sequencing Shows that European Isolates of Francisella tularensis Subspecies tularensis Are Almost Identical to US Laboratory Strain Schu S4 , 2007, PloS one.

[10]  Paul Keim,et al.  Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  W. Sadee,et al.  Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. , 2003, BioTechniques.

[12]  Andrew K. Benson,et al.  Paired-End Sequence Mapping Detects Extensive Genomic Rearrangement and Translocation during Divergence of Francisella tularensis subsp. tularensis and Francisella tularensis subsp. holarctica Populations , 2006, Journal of bacteriology.

[13]  Byron Gallis,et al.  Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains , 2007, Genome Biology.

[14]  Fuli Yu,et al.  Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. , 2005, Genome research.

[15]  D. Watson,et al.  Genotyping with TaqMAMA. , 2004, Genomics.

[16]  Kenneth D. Clinkenbeard,et al.  Chromosome Rearrangement and Diversification of Francisella tularensis Revealed by the Type B (OSU18) Genome Sequence , 2006, Journal of bacteriology.

[17]  P. Mead,et al.  Epidemiologic and Molecular Analysis of Human Tularemia, United States, 1964–2004 , 2006, Emerging infectious diseases.

[18]  W. Ryan Easterday,et al.  Strain-Specific Single-Nucleotide Polymorphism Assays for the Bacillus anthracis Ames Strain , 2006, Journal of Clinical Microbiology.

[19]  Possession, use, and transfer of select agents and toxins. Final rule. , 2008, Federal register.

[20]  W. Ryan Easterday,et al.  Use of Single Nucleotide Polymorphisms in the plcR Gene for Specific Identification of Bacillus anthracis , 2005, Journal of Clinical Microbiology.

[21]  Paul Keim,et al.  Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[22]  M. Forsman,et al.  Canonical Insertion-Deletion Markers for Rapid DNA Typing of Francisella tularensis , 2007, Emerging infectious diseases.

[23]  J. Petersen,et al.  Characterization of a novicida-like subspecies of Francisella tularensis isolated in Australia. , 2003, Journal of medical microbiology.

[24]  M. Forsman,et al.  Evolution of Subspecies of Francisella tularensis , 2005, Journal of Bacteriology.

[25]  Anders Sjöstedt,et al.  The complete genome sequence of Francisella tularensis, the causative agent of tularemia , 2005, Nature Genetics.

[26]  D. Guryčová First isolation of Francisella tularensis subsp. tularensis in Europe , 1998, European Journal of Epidemiology.

[27]  A. Sjöstedt,et al.  Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis , 2004, Journal of bacteriology.

[28]  M. Worobey,et al.  Genomics: Anthrax and the art of war (against ascertainment bias) , 2005, Heredity.

[29]  Ronald W. Davis,et al.  Multiplexed genotyping with sequence-tagged molecular inversion probes , 2003, Nature Biotechnology.

[30]  Giovanna Morelli,et al.  Microevolution and history of the plague bacillus, Yersinia pestis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Keim,et al.  Francisella tularensis in the United States , 2005, Emerging infectious diseases.

[32]  S. Francesconi,et al.  Genomic Deletion Marking an Emerging Subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula , 2007, Applied and Environmental Microbiology.

[33]  Raymond K. Auerbach,et al.  Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis , 2007, PloS one.

[34]  Raymond K. Auerbach,et al.  Assays for the rapid and specific identification of North American Yersinia pestis and the common laboratory strain CO92. , 2008, BioTechniques.

[35]  T. Hadfield,et al.  Genotyping of Francisella tularensis Strains by Pulsed-Field Gel Electrophoresis, Amplified Fragment Length Polymorphism Fingerprinting, and 16S rRNA Gene Sequencing , 2002, Journal of Clinical Microbiology.