On artefact reduction, segmentation and classification of 3D computed tomography imagery in baggage security screening

This work considers novel image-processing and computer-vision techniques to advance the automated analysis of low-resolution, complex 3D volumetric Computed Tomography (CT) imagery obtained in the aviation-security-screening domain. Novel research is conducted in three key areas: image quality improvement, segmentation and classification. A sinogram-completion Metal Artefact Reduction (MAR) technique is presented. The presence of multiple metal objects in the scanning Field of View (FoV) is accounted for via a distance-driven weighting scheme. The technique is shown to perform comparably to the state-of-the-art medical MAR techniques in a quantitative and qualitative comparative evaluation. A materials-based technique is proposed for the segmentation of unknown objects from low-resolution, cluttered volumetric baggage-CT data. Initial coarse segmentations, generated using dual-energy techniques, are refined by partitioning at automatically-detected regions. Partitioning is guided by a novel random-forestbased quality metric (trained to recognise high-quality, single-object segments). A second segmentation-quality measure is presented for quantifying the quality of full segmentations. In a comparative evaluation, the proposed method is shown to produce similar-quality segmentations to the state-of-the-art at reduced processing times. A codebook model constructed using an Extremely Randomised Clustering (ERC) forest for feature encoding, a dense-feature-sampling strategy and a Support Vector Machine (SVM) classifier is presented. The model is shown to offer improvements in accuracy over the state-of-the-art 3D visual-cortex model at reduced processing times, particularly in the presence of noise and artefacts. The overall contribution of this work is a novel, fully-automated and efficient framework for the classification of objects in cluttered 3D baggage-CT imagery. It extends the current state-of-the-art by improving classification performance in the presence of noise and artefacts; by automating the previously-manual isolation of objects and by decreasing processing times by several orders of magnitude.

[1]  Mark Q. Shaw,et al.  Automatic Image Segmentation by Dynamic Region Growth and Multiresolution Merging , 2009, IEEE Transactions on Image Processing.

[2]  A. Macovski,et al.  Energy-selective reconstructions in X-ray computerised tomography , 1976, Physics in medicine and biology.

[3]  Ken D. Sauer,et al.  A unified approach to statistical tomography using coordinate descent optimization , 1996, IEEE Trans. Image Process..

[4]  Tapio Elomaa,et al.  An Analysis of Reduced Error Pruning , 2001, J. Artif. Intell. Res..

[5]  F. Downton,et al.  Introduction to Mathematical Statistics , 1959 .

[6]  Husin Wagiran,et al.  Determination of Effective Atomic Number of Rubber , 1983 .

[7]  Andrew Blake,et al.  Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography , 2009, FIMH.

[8]  J Sau,et al.  Streak artifact reduction in filtered backprojection using a level line-based interpolation method. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  W. Clem Karl,et al.  A learning-based approach to explosives detection using Multi-Energy X-Ray Computed Tomography , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Timo Kohlberger,et al.  Automatic Segmentation of Unknown Objects, with Application to Baggage Security , 2012, ECCV.

[11]  Sinisa Todorovic,et al.  Hough Forest Random Field for Object Recognition and Segmentation , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[13]  Seemeen Karimi,et al.  Segmentation of artifacts and anatomy in CT metal artifact reduction. , 2012, Medical physics.

[14]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[15]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[16]  Laigao Michael Chen,et al.  Novel method for reducing high-attenuation object artifacts in CT reconstructions , 2002, SPIE Medical Imaging.

[17]  Uppaluri S. R. Murty,et al.  Graph Theory with Applications , 1978 .

[18]  Douglas G. Altman,et al.  Measurement in Medicine: The Analysis of Method Comparison Studies , 1983 .

[19]  Gang Li,et al.  Adaptive Seeded Region Growing for Image Segmentation Based on Edge Detection, Texture Extraction and Cloud Model , 2010, ICICA.

[20]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[21]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Zhen Ma,et al.  A review of algorithms for medical image segmentation and their applications to the female pelvic cavity , 2010, Computer methods in biomechanics and biomedical engineering.

[23]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  William A. Barrett,et al.  Image segmentation using globally optimal growth in three dimensions with an adaptive feature set , 1994, Other Conferences.

[25]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[26]  Christopher V. Alvino,et al.  The Piecewise Smooth Mumford–Shah Functional on an Arbitrary Graph , 2009, IEEE Transactions on Image Processing.

[27]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Andrew K. Chan,et al.  Fundamentals of Wavelets: Theory, Algorithms, and Applications , 2011 .

[29]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[30]  Thorsten M. Buzug,et al.  Non-equispaced Fourier Transform Vs. Polynomial-Based Metal Artifact Reduction in Computed Tomography , 2008, Bildverarbeitung für die Medizin.

[31]  Eric A. Hoffman,et al.  Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images , 2001, IEEE Transactions on Medical Imaging.

[32]  Lena Costaridou,et al.  Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. , 2008, Medical physics.

[33]  W.E. Higgins,et al.  Extraction of the hepatic vasculature in rats using 3-D micro-CT images , 2000, IEEE Transactions on Medical Imaging.

[34]  Najla Megherbi Bouallagu,et al.  A novel intensity limiting approach to Metal Artefact Reduction in 3D CT baggage imagery , 2012, 2012 19th IEEE International Conference on Image Processing.

[35]  Daisuke Kihara,et al.  Application of 3D Zernike descriptors to shape-based ligand similarity searching , 2009, J. Cheminformatics.

[36]  Martin Styner,et al.  Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets , 2009, IEEE Transactions on Medical Imaging.

[37]  Leo Grady,et al.  Isoperimetric graph partitioning for image segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Tobias Funk,et al.  Computed Tomographic Metal Artifact Reduction for the Detection and Quantitation of Small Features Near Large Metallic Implants: A Comparison of Published Methods , 2008, Journal of computer assisted tomography.

[39]  Gary H. Glover,et al.  An algorithm for the reduction of metal clip artifacts in CT reconstructions. , 1981 .

[40]  Nikos Paragios,et al.  A Variational Approach for the Segmentation of the Left Ventricle in Cardiac Image Analysis , 2002, International Journal of Computer Vision.

[41]  Najla Megherbi Bouallagu,et al.  A distance driven method for metal artefact reduction in computed tomography , 2013, 2013 IEEE International Conference on Image Processing.

[42]  Zhou Yu,et al.  Fast Model-Based X-Ray CT Reconstruction Using Spatially Nonhomogeneous ICD Optimization , 2011, IEEE Transactions on Image Processing.

[43]  Guido Gerig,et al.  Valmet: A New Validation Tool for Assessing and Improving 3D Object Segmentation , 2001, MICCAI.

[44]  Kenneth M. Hanson,et al.  Noise and Contrast Discrimination in Computed Tomography , 1981 .

[45]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[46]  Ben Glocker,et al.  Atlas Encoding by Randomized Forests for Efficient Label Propagation , 2013, MICCAI.

[47]  J W Sayre,et al.  Knowledge-based segmentation of thoracic computed tomography images for assessment of split lung function. , 2000, Medical physics.

[48]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[49]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[50]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[51]  Thomas Kailath,et al.  Linear Systems , 1980 .

[52]  Gabor T. Herman,et al.  Reconstruction from divergent beams: a comparison of algorithms with and without rebinning. , 1980, Computers in biology and medicine.

[53]  Najla Megherbi Bouallagu,et al.  Object Recognition using 3D SIFT in Complex CT Volumes , 2010, BMVC.

[54]  Quanzheng Li,et al.  Fast hybrid algorithms for PET image reconstruction , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[55]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[56]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[57]  Thomas Henzler,et al.  Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? , 2011, European Radiology.

[58]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[59]  Ben Glocker,et al.  Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR , 2012, MICCAI.

[60]  Daniel Withey,et al.  A Review of Medical Image Segmentation: Methods and Available Software , 2008 .

[61]  Greg Flitton Extending computer vision techniques to recognition problems in 3D volumetric baggage imagery , 2012 .

[62]  Timothy F. Cootes,et al.  Use of active shape models for locating structures in medical images , 1994, Image Vis. Comput..

[63]  Li Zhang,et al.  Metal artifact reduction in CT images by sinogram TV inpainting , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[64]  Johan Nuyts,et al.  Metal artifact reduction in computed tomography using local models in an image block-iterative scheme. , 2012, Medical physics.

[65]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[66]  Pascal Haigron,et al.  Evaluation of multi-atlas-based segmentation of CT scans in prostate cancer radiotherapy , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[67]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[69]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[70]  Hersh Chandarana,et al.  Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. , 2010, AJR. American journal of roentgenology.

[71]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[72]  Radu Ciprian Bilcu,et al.  Combined Non-Local averaging and intersection of confidence intervals for image de-noising , 2008, 2008 15th IEEE International Conference on Image Processing.

[73]  M. Mahesh Search for isotropic resolution in CT from conventional through multiple-row detector. , 2002, Radiographics : a review publication of the Radiological Society of North America, Inc.

[74]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[75]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[76]  Yang Song,et al.  Efficient Multiclass Boosting Classification with Active Learning , 2007, SDM.

[77]  Jun Pang,et al.  Automatic segmentation of crop leaf spot disease images by integrating local threshold and seeded region growing , 2011, 2011 International Conference on Image Analysis and Signal Processing.

[78]  Antonio Criminisi,et al.  Regression Forests for Efficient Anatomy Detection and Localization in CT Studies , 2010, MCV.

[79]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[80]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[81]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  R. T. Ritchings,et al.  A technique for simultaneous dual energy scanning. , 1979, Journal of computer assisted tomography.

[83]  W D Richard,et al.  Automated texture-based segmentation of ultrasound images of the prostate. , 1996, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[84]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[85]  Antonio Criminisi,et al.  Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2012, Found. Trends Comput. Graph. Vis..

[86]  Antonio Criminisi,et al.  Decision Forests with Long-Range Spatial Context for Organ Localization in CT Volumes , 2009 .

[87]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[88]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[89]  J. H. Hubbell,et al.  XCOM: Photon cross sections on a personal computer , 1987 .

[90]  A. Gibbons Algorithmic Graph Theory , 1985 .

[91]  Richard W. Conners,et al.  The utility of x-ray dual-energy transmission and scatter technologies for illicit material detection , 1999 .

[92]  Bruno De Man,et al.  Iterative reconstruction for reduction of metal artifacts in computed tomography , 2001 .

[93]  Toby P. Breckon,et al.  Investigating existing medical CT segmentation techniques within automated baggage and package inspection , 2013, Optics/Photonics in Security and Defence.

[94]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[95]  Klaus D. Tönnies,et al.  Segmentation of medical images using adaptive region growing , 2001, SPIE Medical Imaging.

[96]  Jiang Hsieh,et al.  Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Fourth Edition , 2022 .

[97]  John M. Ollinger,et al.  Maximum-likelihood reconstruction of transmission images in emission computed tomography via the EM algorithm , 1994, IEEE Trans. Medical Imaging.

[98]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[99]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[100]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[101]  Charles L. Byrne,et al.  Convergent block-iterative algorithms for image reconstruction from inconsistent data , 1997, IEEE Trans. Image Process..

[102]  Leo Grady,et al.  Graph theory concepts and definitions used in image processing and analysis , 2012 .

[103]  G. Herman,et al.  Convolution reconstruction techniques for divergent beams. , 1976, Computers in biology and medicine.

[104]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Mahmoud R. El-Sakka,et al.  Fuzzy C-Means Clustering for Segmenting Carotid Artery Ultrasound Images , 2007, ICIAR.

[106]  Seemeen Karimi,et al.  Metal artifact reduction for CT-based luggage screening , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[107]  A. Kak,et al.  Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm , 1984, Ultrasonic imaging.

[108]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[109]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[110]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[111]  Massimo Filippi,et al.  Automatic Segmentation and Classification of Multiple Sclerosis in Multichannel MRI , 2009, IEEE Transactions on Biomedical Engineering.

[112]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[113]  Jamshid Dehmeshki,et al.  Shape based region growing using derivatives of 3D medical images: application to semiautomated detection of pulmonary nodules , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[114]  P. Suetens,et al.  Metal streak artifacts in X-ray computed tomography: a simulation study , 1998, 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255).

[115]  Alvaro R. De Pierro,et al.  A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography , 1996, IEEE Trans. Medical Imaging.

[116]  Milan Sonka,et al.  Robust active appearance models and their application to medical image analysis , 2005, IEEE Transactions on Medical Imaging.

[117]  Habib Zaidi,et al.  Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[118]  Christianne Leidecker,et al.  Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? , 2009, Radiology.

[119]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[120]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[121]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  Hyeran Byun,et al.  A Survey on Pattern Recognition Applications of Support Vector Machines , 2003, Int. J. Pattern Recognit. Artif. Intell..

[123]  H. Tuy A post-processing algorithm to reduce metallic clip artifacts in CT images , 1993, European Radiology.

[124]  Martha Elizabeth Shenton,et al.  On evaluating brain tissue classifiers without a ground truth , 2007, NeuroImage.

[125]  C. Chandrasekar,et al.  Object Recognition using SVM-KNN based on Geometric Moment Invariant , 2011 .

[126]  Thorsten M. Buzug,et al.  Intersection Line Length Normalization in CT Projection Data , 2008, Bildverarbeitung für die Medizin.

[127]  Jeffrey A. Fessler,et al.  Statistical image reconstruction for polyenergetic X-ray computed tomography , 2002, IEEE Transactions on Medical Imaging.

[128]  Yuxuan Lan,et al.  Finding stable salient contours , 2010, Image Vis. Comput..

[129]  S.M. Szilagyi,et al.  MR brain image segmentation using an enhanced fuzzy C-means algorithm , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[130]  Yoav Freund,et al.  An Adaptive Version of the Boost by Majority Algorithm , 1999, COLT.

[131]  Najla Megherbi Bouallagu,et al.  A classifier based approach for the detection of potential threats in CT based Baggage Screening , 2010, 2010 IEEE International Conference on Image Processing.

[132]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[133]  Amol Patil,et al.  Segmentation of blood clot from CT pulmonary angiographic images using a modified seeded region growing algorithm method , 2010, Medical Imaging.

[134]  Gerald Antoch,et al.  Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity , 2011, European Radiology.

[135]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[136]  P. Gilbert Iterative methods for the three-dimensional reconstruction of an object from projections. , 1972, Journal of theoretical biology.

[137]  John K. Tsotsos,et al.  50 Years of object recognition: Directions forward , 2013, Comput. Vis. Image Underst..

[138]  Jun Luo,et al.  Person-Specific SIFT Features for Face Recognition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[139]  Alen Docef,et al.  Reconstruction of a cone-beam CT image via forward iterative projection matching. , 2010, Medical physics.

[140]  Shiying Zhao,et al.  A wavelet method for metal artifact reduction with multiple metallic objects in the field of view , 2002 .

[141]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[142]  Tu Bao Ho,et al.  A Scalable Algorithm for Rule Post-pruning of Large Decision Trees , 2001, PAKDD.

[143]  S. Armato,et al.  Automated lung segmentation in digitized posteroanterior chest radiographs. , 1998, Academic radiology.

[144]  Max A. Viergever,et al.  Error Metrics for Quantitative Evaluation of Medical Image Segmentation , 1998, Theoretical Foundations of Computer Vision.

[145]  Du-Yih Tsai,et al.  Neural-network-based boundary detection of liver structure in CT images for 3-D visualization , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[146]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT.

[147]  Mariano Alcañiz Raya,et al.  A New Approach in Metal Artifact Reduction for CT 3D Reconstruction , 2009, IWINAC.

[148]  Stefan Delorme,et al.  Computed tomography in various fields outside medicine , 2005, European radiology.

[149]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[150]  Lubomir M. Hadjiiski,et al.  Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications. , 2007, Medical physics.

[151]  Olivier Clatz,et al.  Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel MR Images , 2010, MICCAI.

[152]  M. Kachelriess,et al.  Quality of statistical reconstruction in medical CT , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[153]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[154]  Hiroaki Naito,et al.  Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography , 2009, European Radiology.

[155]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[156]  Wufan Chen,et al.  Sinogram Restoration for Low-Dosed X-Ray Computed Tomography Using Fractional-Order Perona-Malik Diffusion , 2012 .

[157]  Hong Yan,et al.  An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation , 2003, IEEE Transactions on Medical Imaging.

[158]  J. Verburg,et al.  CT metal artifact reduction method correcting for beam hardening and missing projections , 2012, Physics in medicine and biology.

[159]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[160]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[161]  R. C. Murry,et al.  Christensen's physics of diagnostic radiology , 1990 .

[162]  Andrew Blake,et al.  Discriminative, Semantic Segmentation of Brain Tissue in MR Images , 2009, MICCAI.

[163]  Richard F. Eilbert,et al.  Aspects of image recognition in Vivid Technologies' dual-energy x-ray system for explosives detection , 1993, Other Conferences.

[164]  Habib Zaidi,et al.  A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. , 2010, Medical physics.

[165]  Martin Tabakov A fuzzy segmentation method for Computed Tomography images , 2007, Int. J. Intell. Inf. Database Syst..

[166]  H. Benali,et al.  Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI , 2009, Neuroradiology.

[167]  Jeffrey A. Fessler,et al.  Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation , 2003 .

[168]  Pierre Chardaire,et al.  Multiscale Nonlinear Decomposition: The Sieve Decomposition Theorem , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[169]  Najla Megherbi Bouallagu,et al.  A 3D extension to cortex like mechanisms for 3D object class recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[170]  Jean-Baptiste Thibault,et al.  A three-dimensional statistical approach to improved image quality for multislice helical CT. , 2007, Medical physics.

[171]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[172]  Jeffrey A. Fessler,et al.  Grouped-coordinate ascent algorithms for penalized-likelihood transmission image reconstruction , 1997, IEEE Transactions on Medical Imaging.

[173]  R Nowotny,et al.  [Program for calculating diagnostic x-ray spectra]. , 1985, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[174]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[175]  Alexei A. Efros,et al.  Ensemble of exemplar-SVMs for object detection and beyond , 2011, 2011 International Conference on Computer Vision.

[176]  Hakan Erdogan,et al.  Ordered subsets algorithms for transmission tomography. , 1999, Physics in medicine and biology.

[177]  S. Deans The Radon Transform and Some of Its Applications , 1983 .

[178]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[179]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[180]  Daisuke Kihara,et al.  Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. , 2011, Current protein & peptide science.

[181]  Paul A. Viola,et al.  Multiple Instance Boosting for Object Detection , 2005, NIPS.

[182]  Susanto Rahardja,et al.  Object Recognition by Discriminative Combinations of Line Segments, Ellipses, and Appearance Features , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[183]  Leo Grady,et al.  Isoperimetric Partitioning: A New Algorithm for Graph Partitioning , 2005, SIAM J. Sci. Comput..

[184]  Butler,et al.  RE-THINKING CHECKED-BAGGAGE SCREENING , 2002 .

[185]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[186]  R. Alvarez,et al.  Comparison of dual energy detector system performance. , 2004, Medical physics.

[187]  Leif H. Finkel,et al.  CURRENT METHODS IN MEDICAL IMAGE SEGMENTATION1 , 2007 .

[188]  Leo Grady,et al.  Fast, Quality, Segmentation of Large Volumes - Isoperimetric Distance Trees , 2006, ECCV.

[189]  Rainer Raupach,et al.  Frequency split metal artifact reduction (FSMAR) in computed tomography. , 2012, Medical physics.

[190]  Soumik Ukil,et al.  Smoothing lung segmentation surfaces in three-dimensional X-ray CT images using anatomic guidance. , 2005, Academic radiology.

[191]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[192]  Gary H. Glover,et al.  Compton scatter effects in CT reconstructions , 1982 .

[193]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[194]  Hengyong Yu,et al.  A segmentation-based method for metal artifact reduction. , 2007, Academic radiology.

[195]  Chein-I Chang,et al.  Adrenal Gland Abnormality Detection Using Random Forest Classification , 2013, Journal of Digital Imaging.

[196]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[197]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[198]  A Fenster,et al.  Split Xenon Detector for Tomochemistry in Computed Tomography , 1978, Journal of computer assisted tomography.

[199]  Bram van Ginneken,et al.  Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review , 2013 .

[200]  Julia F. Barrett,et al.  Artifacts in CT: recognition and avoidance. , 2004, Radiographics : a review publication of the Radiological Society of North America, Inc.

[201]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[202]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[203]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[204]  Timo Kohlberger,et al.  Multi-stage Learning for Robust Lung Segmentation in Challenging CT Volumes , 2011, MICCAI.

[205]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[206]  B. De Man,et al.  Distance-driven projection and backprojection in three dimensions. , 2004, Physics in medicine and biology.

[207]  Z. Yi,et al.  Multi-spectral remote image registration based on SIFT , 2008 .

[208]  F. Spiers,et al.  Effective atomic number and energy absorption in tissues. , 1946, The British journal of radiology.

[209]  W. Kalender Thin-section three-dimensional spiral CT: is isotropic imaging possible? , 1995, Radiology.

[210]  Toby P. Breckon,et al.  Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab , 2011 .

[211]  Reinhard Beichel,et al.  Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach , 2012, IEEE Transactions on Medical Imaging.

[212]  Bram van Ginneken,et al.  Automatic segmentation of the liver in computed tomography scans with voxel classification and atlas matching , 2007 .

[213]  Edoardo Ardizzone,et al.  Automatic Volumetric Liver Segmentation Using Texture Based Region Growing , 2010, 2010 International Conference on Complex, Intelligent and Software Intensive Systems.

[214]  Willi A. Kalender,et al.  Algorithms for the reduction of CT artifacts caused by metallic implants , 1990, Medical Imaging.

[215]  G. Soulez,et al.  Reduction of Beam-Hardening Artifacts in X-Ray CT , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[216]  Antonio Criminisi,et al.  Object Class Recognition at a Glance , 2006 .

[217]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[218]  Thorsten M. Buzug,et al.  Spurious structures created by interpolation-based CT metal artifact reduction , 2009, Medical Imaging.

[219]  Fredrick L. Roder,et al.  Explosives Detection By Dual-Energy Computed Tomography (CT) , 1979, Other Conferences.

[220]  Andries P. Engelbrecht,et al.  Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification , 2007 .

[221]  G. Celeux,et al.  An entropy criterion for assessing the number of clusters in a mixture model , 1996 .

[222]  Johan Nuyts,et al.  An experimental survey of metal artefact reduction in computed tomography. , 2013, Journal of X-ray science and technology.

[223]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[224]  Konstantin Nikolaou,et al.  Dual energy CT for the assessment of lung perfusion--correlation to scintigraphy. , 2008, European journal of radiology.

[225]  Najla Megherbi Bouallagu,et al.  A comparison of 3D interest point descriptors with application to airport baggage object detection in complex CT imagery , 2013, Pattern Recognit..

[226]  N. Sochen,et al.  Texture Preserving Variational Denoising Using an Adaptive Fidelity Term , 2003 .

[227]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[228]  Nicholas Ayache,et al.  Directional Anisotropic Diffusion Applied to Segmentation of Vessels in 3D Images , 1997, Scale-Space.

[229]  Roderick Urquhart,et al.  Graph theoretical clustering based on limited neighbourhood sets , 1982, Pattern Recognit..

[230]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[231]  Dimitri P. Bertsekas,et al.  A New Class of Incremental Gradient Methods for Least Squares Problems , 1997, SIAM J. Optim..

[232]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[233]  Habib Zaidi,et al.  A virtual sinogram method to reduce dental metallic implant artefacts in computed tomography-based attenuation correction for PET , 2010, Nuclear medicine communications.

[234]  Jennifer Prekeges Nuclear Medicine Instrumentation , 2009 .

[235]  M. Reiser,et al.  Material differentiation by dual energy CT: initial experience , 2007, European Radiology.

[236]  Eric L. Miller,et al.  A Parametric Level-Set Approach to Simultaneous Object Identification and Background Reconstruction for Dual-Energy Computed Tomography , 2011, IEEE Transactions on Image Processing.

[237]  Zexuan Ji,et al.  A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image , 2011, Comput. Medical Imaging Graph..

[238]  Rich Caruana,et al.  An empirical evaluation of supervised learning in high dimensions , 2008, ICML '08.

[239]  Shinichiro Mori,et al.  Preliminary study of correction of original metal artifacts due to I-125 seeds in postimplant dosimetry for prostate permanent implant brachytherapy , 2006, Radiation Medicine.

[240]  Mandy Eberhart,et al.  Decision Forests For Computer Vision And Medical Image Analysis , 2016 .

[241]  Limin Luo,et al.  Metal artifact reduction in CT based on adaptive steering filter and nonlocal sinogram inpainting , 2010, 2010 3rd International Conference on Biomedical Engineering and Informatics.

[242]  W. Kalender,et al.  A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images , 2004, European Radiology.

[243]  A. Koehler,et al.  A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order , 1988 .

[244]  Eric A. Wan,et al.  Neural network classification: a Bayesian interpretation , 1990, IEEE Trans. Neural Networks.

[245]  Lei Zhu,et al.  On Simulating Subjective Evaluation Using Combined Objective Metrics for Validation of 3D Tumor Segmentation , 2007, MICCAI.

[246]  Gady Agam,et al.  Vessel tree reconstruction in thoracic CT scans with application to nodule detection , 2005, IEEE Transactions on Medical Imaging.

[247]  Thomas Bülow,et al.  Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data , 2005 .

[248]  Juha Koikkalainen,et al.  Fast and robust multi-atlas segmentation of brain magnetic resonance images , 2010, NeuroImage.

[249]  Ewa Pietka,et al.  Fuzzy Clustering in Segmentation of Abdominal Structures Based on CT Studies , 2008, Information Technologies in Biomedicine.

[250]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[251]  Bärbel Kratz,et al.  Reference-free ground truth metric for metal artifact evaluation in CT images. , 2011, Medical physics.

[252]  Mulugeta Gebregziabher,et al.  Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience , 2008, European Radiology.

[253]  Nikolaos Canterakis,et al.  3D Zernike Moments and Zernike Affine Invariants for 3D Image Analysis and Recognition , 1999 .

[254]  Hiroyuki Yoshida,et al.  Low-dose dual-energy electronic cleansing for fecal-tagging CT Colonography , 2013, Medical Imaging.

[255]  Steven B. Smith,et al.  Digital Signal Processing: A Practical Guide for Engineers and Scientists , 2002 .

[256]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[257]  T. Buzug,et al.  Modified MLEM Algorithm for Artifact Suppression in CT , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[258]  Ken D. Sauer,et al.  A local update strategy for iterative reconstruction from projections , 1993, IEEE Trans. Signal Process..

[259]  J. Alison Noble,et al.  Automatic detection of local fetal brain structures in ultrasound images , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[260]  Mehran Ebrahimi,et al.  Efficient nonlocal-means denoising using the SVD , 2008, 2008 15th IEEE International Conference on Image Processing.

[261]  Thorsten M. Buzug,et al.  The λ-MLEM Algorithm: An Iterative Reconstruction Technique for Metal Artifact Reduction in CT Images , 2007 .

[262]  J. A. Rathkopf,et al.  Tables and graphs of photon interaction cross-sections from 10-eV to 100-GeV derived from the LLNL evaluated photon data library (EPDL). Part A: Z = 1 to 50 , 1981 .

[263]  Giovanni B. Frisoni,et al.  Hippocampal segmentation by Random Forest classification , 2011, 2011 IEEE International Symposium on Medical Measurements and Applications.

[264]  Jin Wang,et al.  Fast Non-Local Algorithm for Image Denoising , 2006, 2006 International Conference on Image Processing.

[265]  William E. Higgins,et al.  Symmetric region growing , 2003, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[266]  E J Burge,et al.  X Rays in Atomic and Nuclear Physics , 1974 .

[267]  Rainer Raupach,et al.  Normalized metal artifact reduction (NMAR) in computed tomography. , 2010, Medical physics.

[268]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[269]  Guillermo Sapiro,et al.  Fast image and video denoising via nonlocal means of similar neighborhoods , 2005, IEEE Signal Processing Letters.

[270]  Gavin C. Cawley,et al.  The Segmentation of Images via Scale-Space Trees , 1998, BMVC.

[271]  Arnold W. M. Smeulders,et al.  Real-time bag of words, approximately , 2009, CIVR '09.

[272]  R. Q. Edwards,et al.  Image Separation Radioisotope Scanning , 1963 .

[273]  Rainer Raupach,et al.  Adaptive normalized metal artifact reduction (ANMAR) in computed tomography , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[274]  Hans-Peter Piepho,et al.  A comparison of random forests, boosting and support vector machines for genomic selection , 2011, BMC proceedings.

[275]  W. Kalender,et al.  Reduction of CT artifacts caused by metallic implants. , 1987 .

[276]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[277]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[278]  Fengzeng Jian,et al.  An improved level set method for vertebra CT image segmentation , 2013, Biomedical engineering online.

[279]  Patrick Dupont,et al.  Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm , 1999 .

[280]  Hiroyuki Yoshida,et al.  Automated detection of colorectal lesions with dual-energy CT colonography , 2012, Medical Imaging.

[281]  H. Malcolm Hudson,et al.  Accelerated image reconstruction using ordered subsets of projection data , 1994, IEEE Trans. Medical Imaging.

[282]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[283]  S. Zhao,et al.  X-ray CT metal artifact reduction using wavelets: an application for imaging total hip prostheses , 2000, IEEE Transactions on Medical Imaging.

[284]  Richard L. Scheaffer,et al.  Probability and statistics for engineers , 1986 .

[285]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[286]  Baoyu Dong,et al.  Image reconstruction using EM method in X-ray CT , 2007, 2007 International Conference on Wavelet Analysis and Pattern Recognition.

[287]  Juergen Gall,et al.  Class-specific Hough forests for object detection , 2009, CVPR.

[288]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[289]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[290]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[291]  Lucila Ohno-Machado,et al.  Logistic regression and artificial neural network classification models: a methodology review , 2002, J. Biomed. Informatics.

[292]  L. Xing,et al.  Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization. , 2011, Medical physics.

[293]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[294]  Maneesha Singh,et al.  Explosives detection systems (EDS) for aviation security , 2003, Signal Process..

[295]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[296]  B. van Ginneken,et al.  Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. , 2009, Medical physics.

[297]  Jing Peng,et al.  HEp-2 cell classification in IIF images using Shareboost , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[298]  William R. Hendee,et al.  Production of X Rays , 2003 .

[299]  Ryutarou Ohbuchi,et al.  Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features , 2009, CIVR '09.

[300]  M.S. Nixon,et al.  Robust 2D Ear Registration and Recognition Based on SIFT Point Matching , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[301]  Zhiqiang Chen,et al.  Metal artifact reduction in dual energy CT by sinogram segmentation based on active contour model and TV inpainting , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[302]  Ronald M. Summers,et al.  Colonic polyp segmentation in CT colonography-based on fuzzy clustering and deformable models , 2004, IEEE Transactions on Medical Imaging.

[303]  Dimitris N. Metaxas,et al.  Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images , 2011, IPMI.

[304]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[305]  C. Crawford,et al.  Dual energy computed tomography for explosive detection , 2006 .

[306]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[307]  Milan Sonka,et al.  Automated segmentation of pulmonary vascular tree from 3D CT images , 2004, SPIE Medical Imaging.

[308]  Zhengrong Liang,et al.  Analytical noise treatment for low-dose CT projection data by penalized weighted least-square smoothing in the K-L domain , 2002, SPIE Medical Imaging.

[309]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[310]  D. Fleischmann,et al.  Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. , 2011, Radiology.

[311]  Bram van Ginneken,et al.  Toward automated segmentation of the pathological lung in CT , 2005, IEEE Transactions on Medical Imaging.

[312]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[313]  Myungcheol Lee,et al.  Graph theory for image analysis: an approach based on the shortest spanning tree , 1986 .

[314]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[315]  Roberto Cipolla,et al.  Semantic texton forests for image categorization and segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[316]  L. Wehenkel On uncertainty measures used for decision tree induction , 1996 .

[317]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[318]  Lothar Spies,et al.  Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. , 2006, Medical physics.

[319]  M. Nasipuri,et al.  Segmentation of MRI brain images by incorporating intensity inhomogeneity and spatial information using probabilistic fuzzy c-means clustering algorithm , 2012, 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS).

[320]  Tetsuya Takiguchi,et al.  Object recognition and segmentation using SIFT and Graph Cuts , 2008, 2008 19th International Conference on Pattern Recognition.

[321]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[322]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[323]  Sos S. Agaian,et al.  CT baggage image enhancement using a combination of alpha-weighted mean separation and histogram equalization , 2010, Defense + Commercial Sensing.

[324]  M W Vannier,et al.  Fast iterative algorithm for metal artifact reduction in X-ray CT. , 2000, Academic radiology.

[325]  F. Beekma,et al.  Ordered subset reconstruction for x-ray CT. , 2001, Physics in medicine and biology.

[326]  Xiaochuan Pan,et al.  Reduction of computed tomography metal artifacts due to the Fletcher-Suit applicator in gynecology patients receiving intracavitary brachytherapy. , 2003, Brachytherapy.

[327]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[328]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[329]  Ben Glocker,et al.  Joint Classification-Regression Forests for Spatially Structured Multi-object Segmentation , 2012, ECCV.

[330]  C. McCollough,et al.  Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. , 2009, Medical physics.

[331]  T. Peters,et al.  Computed Tomography with Fan Beam Geometry , 1977, Journal of computer assisted tomography.

[332]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[333]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[334]  Lin Cheng,et al.  Fast Iterative Adaptive Reconstruction in Low-Dose CT Imaging , 2006, 2006 International Conference on Image Processing.

[335]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[336]  S. Schaller,et al.  Multislice Computed Tomography : Basic Principles and Clinical Applications , 2022 .

[337]  Jeffrey A. Fessler,et al.  Ieee Transactions on Image Processing: to Appear Globally Convergent Algorithms for Maximum a Posteriori Transmission Tomography , 2022 .

[338]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[339]  Lily Wang,et al.  Cross-Section Reconstruction with a Fan-Beam Scanning Geometry , 1977, IEEE Transactions on Computers.

[340]  Jong Beom Ra,et al.  Reduction of artifacts due to multiple metallic objects in computed tomography , 2009, Medical Imaging.

[341]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[342]  Cordelia Schmid,et al.  A sparse texture representation using affine-invariant regions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[343]  Markus Barth,et al.  Phase unwrapping of MR images using ΦUN - A fast and robust region growing algorithm , 2009, Medical Image Anal..

[344]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[345]  M. Defrise,et al.  Iterative reconstruction for helical CT: a simulation study. , 1998, Physics in medicine and biology.

[346]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[347]  W. Kalender,et al.  Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. , 1986, Medical physics.

[348]  Manuel Menezes de Oliveira Neto,et al.  Fast Digital Image Inpainting , 2001, VIIP.

[349]  Olivier Clatz,et al.  Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images , 2011, NeuroImage.

[350]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[351]  Yuliya Tarabalka,et al.  Best Merge Region-Growing Segmentation With Integrated Nonadjacent Region Object Aggregation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[352]  Huichuan Duan,et al.  3D computerized segmentation of lung volume with computed tomography. , 2006, Academic radiology.

[353]  M. Macari,et al.  Dual energy CT: preliminary observations and potential clinical applications in the abdomen , 2008, European Radiology.

[354]  Ioannis Pitas,et al.  Segmentation of ultrasonic images using Support Vector Machines , 2003, Pattern Recognit. Lett..

[355]  W. Clem Karl,et al.  Classification-aware dimensionality reduction methods for explosives detection using multi-energy x-ray computed tomography , 2011, Electronic Imaging.

[356]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[357]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[358]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[359]  M. Levoy,et al.  Gaussian KD-trees for fast high-dimensional filtering , 2009, SIGGRAPH 2009.

[360]  David M. Paganin,et al.  X-ray interactions with matter , 2006 .

[361]  Yi-Fei Pu,et al.  A new CT metal artifacts reduction algorithm based on fractional-order sinogram inpainting. , 2011, Journal of X-ray science and technology.

[362]  Robert D. Speller,et al.  Radiation-based security , 2001 .

[363]  A. Macovski,et al.  Generalized image combinations in dual KVP digital radiography. , 1981, Medical physics.

[364]  Qiang Li,et al.  Automated segmentation of lungs with severe interstitial lung disease in CT. , 2009, Medical physics.

[365]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[366]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[367]  Huiman X Barnhart,et al.  Dual-energy CT for characterization of adrenal nodules: initial experience. , 2010, AJR. American journal of roentgenology.

[368]  Miin Shen Yang,et al.  Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. , 2002, Magnetic resonance imaging.

[369]  Pa Polski International Aviation Security Research and Development , 1994 .

[370]  Constantin F. Aliferis,et al.  A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification , 2008, BMC Bioinformatics.

[371]  Wankai Deng,et al.  MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve , 2010, 2010 3rd International Conference on Biomedical Engineering and Informatics.

[372]  B.R. Abidi,et al.  Improving Weapon Detection in Single Energy X-Ray Images Through Pseudocoloring , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[373]  Josien P. W. Pluim,et al.  Fast Automatic Multi-atlas Segmentation of the Prostate from 3D MR Images , 2011, Prostate Cancer Imaging.

[374]  Claudio Pollo,et al.  Atlas-based segmentation of pathological MR brain images using a model of lesion growth , 2004, IEEE Transactions on Medical Imaging.

[375]  Joseph A. O'Sullivan,et al.  Iterative deblurring for CT metal artifact reduction , 1996, IEEE Trans. Medical Imaging.

[376]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[377]  Ayhan Demiriz,et al.  Linear Programming Boosting via Column Generation , 2002, Machine Learning.

[378]  C D Claussen,et al.  Automatic bone and plaque removal using dual energy CT for head and neck angiography: feasibility and initial performance evaluation. , 2010, European journal of radiology.

[379]  D. West Introduction to Graph Theory , 1995 .

[380]  W H OLDENDORF,et al.  Isolated flying spot detection of radiodensity discontinuities--displaying the internal structural pattern of a complex object. , 1961, IRE transactions on bio-medical electronics.

[381]  W.E. Higgins,et al.  System for analyzing high-resolution three-dimensional coronary angiograms , 1996, IEEE Trans. Medical Imaging.

[382]  Mariano Alcañiz Raya,et al.  A new 3D paradigm for metal artifact reduction in dental CT , 2011, 2011 18th IEEE International Conference on Image Processing.

[383]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[384]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[385]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[386]  Wenyuan Bi,et al.  A volumetric object detection framework with dual-energy CT , 2008 .

[387]  Wenyuan Bi,et al.  Fast detection of 3D planes by a single slice detector helical CT , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[388]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[389]  Chitra Dorai,et al.  COSMOS-a representation scheme for free-form surfaces , 1995, Proceedings of IEEE International Conference on Computer Vision.

[390]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[391]  Nicholas Ayache,et al.  Layered Spatio-temporal Forests for Left Ventricle Segmentation from 4D Cardiac MRI Data , 2011, STACOM.

[392]  Luc Van Gool,et al.  Content-Based Image Retrieval Based on Local Affinely Invariant Regions , 1999, VISUAL.

[393]  H K Huang,et al.  A fast dual-energy computational method using isotransmission lines and table lookup. , 1987, Medical physics.

[394]  Patrick Dupont,et al.  An iterative maximum-likelihood polychromatic algorithm for CT , 2001, IEEE Transactions on Medical Imaging.

[395]  P. Jacobs,et al.  Applications of X-ray computed tomography in the geosciences , 2003, Geological Society, London, Special Publications.

[396]  Najla Megherbi Bouallagu,et al.  A comparison of classification approaches for threat detection in CT based baggage screening , 2012, 2012 19th IEEE International Conference on Image Processing.

[397]  Peter Bühlmann,et al.  Boosting for Tumor Classification with Gene Expression Data , 2003, Bioinform..

[398]  Andrew Zisserman,et al.  Person Spotting: Video Shot Retrieval for Face Sets , 2005, CIVR.

[399]  Yingzi Du,et al.  Region-based SIFT approach to iris recognition , 2009 .

[400]  Theobald Fuchs,et al.  Quantitative material analysis by dual-energy computed tomography for industrial NDT applications , 2011 .

[401]  David Faul,et al.  Suppression of Metal Artifacts in CT Using a Reconstruction Procedure That Combines MAP and Projection Completion , 2009, IEEE Transactions on Medical Imaging.

[402]  Richard A. Robb,et al.  Dual energy CT: How to best blend both energies in one fused image? , 2008, SPIE Medical Imaging.

[403]  Yan Gao,et al.  Optimal region growing segmentation and its effect on classification accuracy , 2011 .

[404]  Fred A. Hamprecht,et al.  Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images , 2011, PloS one.

[405]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[406]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[407]  Zhuowen Tu,et al.  Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[408]  Yang Yu Content-Based 3D Model Retrieval: A Survey , 2004 .

[409]  R. Geise Computed Tomography: Physical Principles, Clinical Applications, and Quality Control , 1995 .

[410]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[411]  R. Nelson,et al.  Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? , 2010, Radiographics : a review publication of the Radiological Society of North America, Inc.

[412]  Barthold Lichtenbelt,et al.  Introduction to volume rendering , 1998 .

[413]  Guowei Zhang,et al.  Exact Reconstruction for Dual Energy Computed Tomography Using an H-L Curve Method , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[414]  Peter Auer,et al.  Generic object recognition with boosting , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[415]  J Weber,et al.  The effective atomic number and the calculation of the composition of phantom materials. , 1969, The British journal of radiology.

[416]  Peter M. Atkinson,et al.  Image processing, the fundamentals , 2001 .

[417]  Salvatore J. Stolfo,et al.  Cost Complexity-Based Pruning of Ensemble Classifiers , 2001, Knowledge and Information Systems.

[418]  M. Giger,et al.  A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. , 2006, Academic radiology.

[419]  Joseph A. O'Sullivan,et al.  Deblurring subject to nonnegativity constraints , 1992, IEEE Trans. Signal Process..

[420]  B. E. Oppenheim,et al.  Reconstruction tomography from incomplete projections , 1975 .

[421]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[422]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[423]  Timo Kohlberger,et al.  Evaluating Segmentation Error without Ground Truth , 2012, MICCAI.

[424]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[425]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[426]  W R Brody,et al.  A method for selective tissue and bone visualization using dual energy scanned projection radiography. , 1981, Medical physics.

[427]  Ming Zhang,et al.  A new image denoising framework based on bilateral filter , 2008, Electronic Imaging.

[428]  Norbert J. Pelc,et al.  A comparison of four algorithms for metal artifact reduction in CT imaging , 2011, Medical Imaging.

[429]  Gabor T. Herman,et al.  Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.

[430]  Yicong Zhou,et al.  3D CT baggage image enhancement based on order statistic decomposition , 2010, 2010 IEEE International Conference on Technologies for Homeland Security (HST).

[431]  Jason Weston,et al.  A user's guide to support vector machines. , 2010, Methods in molecular biology.

[432]  Wu De,et al.  Fast capsule image segmentation based on linear region growing , 2011, 2011 IEEE International Conference on Computer Science and Automation Engineering.