A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Geometrically linear problems

In this paper a new reduced integration eight-node solid-shell finite element is presented. The enhanced assumed strain (EAS) concept based on the Hu-Washizu variational principle requires only one EAS degree-of-freedom to cure volumetric and Poisson thickness locking. One key point of the derivation is the Taylor expansion of the inverse Jacobian with respect to the element center, which closely approximates the element shape and allows us to implement the assumed natural strain (ANS) concept to eliminate the curvature thickness and the transverse shear locking. The second crucial point is a combined Taylor expansion of the compatible strain with respect to the center of the element and the normal through the element center leading to an efficient and locking-free hourglass stabilization without rank deficiency. Hence, the element requires only a single integration point in the shell plane and at least two integration points in thickness direction. The formulation fulfills both the membrane and the bending patch test exactly, which has, to the authors' knowledge, not yet been achieved for reduced integration eight-node solid-shell elements in the literature. Owing to the three-dimensional modeling of the structure, fully three-dimensional matenal models can be implemented without additional assumptions.

[1]  H. Lu,et al.  Development of a new quadratic shell element considering the normal stress in the thickness direction for simulating sheet metal forming , 2006 .

[2]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[3]  Stefanie Reese,et al.  A large deformation solid‐shell concept based on reduced integration with hourglass stabilization , 2007 .

[4]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[5]  J. Yoon,et al.  One point quadrature shell element with through-thickness stretch , 2005 .

[6]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[7]  Shangyou Zhang Numerical integration with Taylor truncations for the quadrilateral and hexahedral finite elements , 2007 .

[8]  K. Y. Sze,et al.  A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation , 2000 .

[9]  Eric P. Kasper,et al.  A mixed-enhanced strain method , 2000 .

[10]  Jeong Whan Yoon,et al.  A new one‐point quadrature enhanced assumed strain (EAS) solid‐shell element with multiple integration points along thickness—part II: nonlinear applications , 2006 .

[11]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[12]  K. ARUNAKIRINATHAR,et al.  A Stable Affine-Approximate Finite Element Method , 2002, SIAM J. Numer. Anal..

[13]  A. A. Fernandes,et al.  Analysis of 3D problems using a new enhanced strain hexahedral element , 2003 .

[14]  R. Hauptmann,et al.  Extension of the ‘solid‐shell’ concept for application to large elastic and large elastoplastic deformations , 2000 .

[15]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[16]  Renato Natal Jorge,et al.  Development of shear locking‐free shell elements using an enhanced assumed strain formulation , 2002 .

[17]  B. D. Reddy,et al.  The equivalent parallelogram and parallelepiped, and their application to stabilized finite elements in two and three dimensions , 2001 .

[18]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[19]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .

[20]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[21]  F. Gruttmann,et al.  A linear quadrilateral shell element with fast stiffness computation , 2005 .

[22]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .

[23]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[24]  Peter Wriggers,et al.  An efficient 3D enhanced strain element with Taylor expansion of the shape functions , 1996 .

[25]  Michael A. Puso,et al.  A highly efficient enhanced assumed strain physically stabilized hexahedral element , 2000 .

[26]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[27]  Sven Klinkel,et al.  A robust non-linear solid shell element based on a mixed variational formulation , 2006 .

[28]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[29]  Alain Combescure,et al.  SHB8PS––a new adaptative, assumed-strain continuum mechanics shell element for impact analysis , 2002 .

[30]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[31]  L. P. Bindeman,et al.  Assumed strain stabilization of the eight node hexahedral element , 1993 .

[32]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[33]  Yu-Kan Hu,et al.  A one-point quadrature eight-node brick element with hourglass control , 1997 .

[34]  O. Zienkiewicz,et al.  The finite element patch test revisited a computer test for convergence, validation and error estimates , 1997 .

[35]  F. Gruttmann,et al.  A stabilized one‐point integrated quadrilateral Reissner–Mindlin plate element , 2004 .

[36]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms , 1992 .

[37]  L. Duartefilho Geometrically nonlinear static and dynamic analysis of shells and plates using the eight-node hexahedral element with one-point quadrature , 2004 .

[38]  K. D. Kim,et al.  A resultant 8-node solid-shell element for geometrically nonlinear analysis , 2005 .

[39]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[40]  D. Talaslidis,et al.  A Simple and Efficient Approximation of Shells via Finite Quadrilateral Elements , 1982 .

[41]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[42]  Wing Kam Liu,et al.  A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis , 1998 .

[43]  Boštjan Brank,et al.  Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation , 2002 .

[44]  R. Hauptmann,et al.  On volumetric locking of low‐order solid and solid‐shell elements for finite elastoviscoplastic deformations and selective reduced integration , 2000 .

[45]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[46]  M. Harnau,et al.  About linear and quadratic Solid-Shell elements at large deformations , 2002 .

[47]  Norman Davids,et al.  Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss’ mechanical quadrature formula , 1942 .

[48]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[49]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[50]  R. Hauptmann,et al.  `Solid-shell' elements with linear and quadratic shape functions at large deformations with nearly incompressible materials , 2001 .

[51]  Jeong Whan Yoon,et al.  Enhanced one‐point quadrature shell element for nonlinear applications , 2002 .

[52]  Maenghyo Cho,et al.  Development of geometrically exact new shell elements based on general curvilinear co‐ordinates , 2003 .

[53]  Robert L. Taylor,et al.  A mixed-enhanced strain method: Part II: Geometrically nonlinear problems , 2000 .

[54]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[55]  Frédéric Barlat,et al.  Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy , 2002 .

[56]  Arif Masud,et al.  A stabilized 3-D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells , 2000 .

[57]  R. M. Natal Jorge,et al.  An enhanced strain 3D element for large deformation elastoplastic thin-shell applications , 2004 .

[58]  Peter Wriggers,et al.  A note on enhanced strain methods for large deformations , 1996 .

[59]  Ekkehard Ramm,et al.  Consistent linearization in elasto‐plastic shell analysis , 1988 .

[60]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[61]  Armando Miguel Awruch,et al.  Geometrically nonlinear static and dynamic analysis of shells and plates using the eight-node hexahedral element with one-point quadrature , 2004 .

[62]  R. M. Natal Jorge,et al.  A new volumetric and shear locking‐free 3D enhanced strain element , 2003 .

[63]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[64]  Jeong Whan Yoon,et al.  A new one‐point quadrature enhanced assumed strain (EAS) solid‐shell element with multiple integration points along thickness: Part I—geometrically linear applications , 2005 .

[65]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[66]  Alain Combescure,et al.  A new one‐point quadrature, general non‐linear quadrilateral shell element with physical stabilization , 1998 .

[67]  A. Groenwold,et al.  On reduced integration and locking of flat shell finite elements with drilling rotations , 2002 .

[68]  Ted Belytschko,et al.  Advances in one-point quadrature shell elements , 1992 .

[69]  Jeong Whan Yoon,et al.  Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one‐point quadrature solid‐shell elements , 2008 .

[70]  E. A. de Souza Neto,et al.  Remarks on the stability of enhanced strain elements in finite elasticity and elastoplasticity , 1995 .

[71]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[72]  Antoine Legay,et al.  Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS , 2003 .

[73]  Christian Miehe,et al.  A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains , 1998 .