A numerical method for modeling ultrasonic guided waves in thin-walled waveguides coupled to fluids

Abstract The paper presents a hybrid numerical method for the computation of the dispersion characteristics of ultrasonic guided waves propagating in isotropic and viscoelastic thin-walled waveguides in contact with fluids along their inner or outer wall. To this end, the solid waveguide is modeled by means of a Semi-Analytical Finite Element method implementing the first order shear deformation theory, while the effects of the fluid are taken into account by means of a regularized 2.5D Boundary Element Method with Helmholtz-type kernels. By coupling the two methods along the mid-surface of the solid waveguide, the dispersion relations of the elastic-acoustic system are obtained as the solution of a nonlinear eigenvalue problem in the complex axial wavenumbers for any fixed circular frequency. Two different case studies are presented: an oil-filled pipe and a water-loaded steel rectangular waveguide.

[1]  M. Gallezot,et al.  A modal approach based on perfectly matched layers for the forced response of elastic open waveguides , 2018, J. Comput. Phys..

[2]  Hauke Gravenkamp,et al.  The computation of dispersion relations for three-dimensional elastic waveguides using the Scaled Boundary Finite Element Method , 2013 .

[3]  A. V. Astaneh,et al.  Dispersion analysis of composite acousto-elastic waveguides , 2017 .

[4]  Eugenio Oñate,et al.  Dynamic analysis of structures using a Reissner-Mindlin finite strip formulation , 1989 .

[5]  Roman Solecki,et al.  Wave propagation in fluid‐loaded, transversely isotropic cylinders. Part I. Analytical formulation , 1996 .

[6]  Hauke Gravenkamp,et al.  Numerical modeling of elastic waveguides coupled to infinite fluid media using exact boundary conditions , 2014 .

[7]  Eduardo Kausel,et al.  Fundamental Solutions in Elastodynamics: Contents , 2006 .

[8]  L. Gaul,et al.  Dispersion curves of fluid filled elastic pipes by standard FE models and eigenpath analysis , 2006 .

[9]  Hauke Gravenkamp,et al.  The computation of dispersion relations for axisymmetric waveguides using the Scaled Boundary Finite Element Method. , 2014, Ultrasonics.

[10]  J. B. Kosmatka,et al.  Natural vibrations and waves in pretwisted rods , 1994 .

[11]  Fabien Treyssède,et al.  Elastic waves in helical waveguides , 2008 .

[12]  R V Craster,et al.  Modeling guided elastic waves in generally anisotropic media using a spectral collocation method. , 2015, The Journal of the Acoustical Society of America.

[13]  Mohamed Ichchou,et al.  Wave motion in thin-walled structures , 2005 .

[14]  A. Tadeu,et al.  Simulation of sound absorption in 2D thin elements using a coupled BEM/TBEM formulation in the presence of fixed and moving 3D sources , 2012 .

[15]  Carlos Alberto Brebbia,et al.  Boundary Elements: An Introductory Course , 1989 .

[16]  Takahiro Hayashi,et al.  Calculation of leaky Lamb waves with a semi-analytical finite element method. , 2014, Ultrasonics.

[17]  Ivan Bartoli,et al.  Modeling wave propagation in damped waveguides of arbitrary cross-section , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  David Thompson,et al.  A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails , 2009 .

[19]  Alessandro Marzani,et al.  Time–transient response for ultrasonic guided waves propagating in damped cylinders , 2008 .

[20]  I. Bartoli,et al.  Ultrasonic leaky guided waves in fluid-coupled generic waveguides: hybrid finite-boundary element dispersion analysis and experimental validation , 2014 .

[21]  Svante Finnveden,et al.  Waveguide finite elements for curved structures , 2008 .

[22]  Christian Soize,et al.  Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification , 2014 .

[23]  Takahiro Hayashi,et al.  Transient analysis of leaky Lamb waves with a semi-analytical finite element method. , 2015, Ultrasonics.

[24]  Paulo Santos,et al.  3-D wave propagation in fluid-filled irregular boreholes in elastic formations , 2001 .

[25]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[26]  Patrice Cartraud,et al.  Mechanical modeling of helical structures accounting for translational invariance. Part 2 : Guided wave propagation under axial loads , 2013 .

[27]  Svante Finnveden,et al.  Waves in thin-walled fluid-filled ducts with arbitrary cross-sections , 2008 .

[28]  W. Beyn An integral method for solving nonlinear eigenvalue problems , 2012 .

[29]  C. Nilsson,et al.  Input power to waveguides calculated by a finite element method , 2007 .

[30]  T. Mazúch,et al.  Wave Dispersion Modelling in Anisotropic Shells and Rods by the Finite Element Method , 1996 .

[31]  Long Chen FINITE ELEMENT METHOD , 2013 .

[32]  Ivan Bartoli,et al.  A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides , 2008 .

[33]  Tg Davies,et al.  Boundary Element Programming in Mechanics , 2002 .

[34]  Joseph L. Rose,et al.  Guided Wave Propagation Mechanics Across a Pipe Elbow , 2005 .

[35]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[36]  S. Finnveden SPECTRAL FINITE ELEMENT ANALYSIS OF THE VIBRATION OF STRAIGHT FLUID-FILLED PIPES WITH FLANGES , 1997 .

[37]  I. Bartoli,et al.  Wave dispersion in thin-walled orthotropic waveguides using the first order shear deformation theory , 2016 .

[38]  D. J. Mead A general theory of harmonic wave propagation in linear periodic systems with multiple coupling , 1973 .

[39]  N. A. Haskell The Dispersion of Surface Waves on Multilayered Media , 1953 .

[40]  Dewey H. Hodges,et al.  Dynamic Dispersion Curves for Non-Homogeneous Anisotropic Beams with Cross-Sections of Arbitrary Geometry , 1998 .

[41]  Y. K. Lin,et al.  A BRIEF SURVEY OF TRANSFER MATRIX TECHNIQUES WITH SPECIAL REFERENCE TO THE ANALYSIS OF AIRCRAFT PANELS , 1969 .

[42]  J. Rose,et al.  Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. , 2003, Ultrasonics.

[43]  L. Gavric Computation of propagative waves in free rail using a finite element technique , 1995 .

[44]  Laurence J. Jacobs,et al.  Modeling elastic wave propagation in waveguides with the finite element method , 1999 .

[45]  Sohichi Hirose,et al.  Boundary element analysis of guided waves in a bar with an arbitrary cross-section , 2005 .

[46]  F. Treyssède,et al.  Spectral element computation of high-frequency leaky modes in three-dimensional solid waveguides , 2016, J. Comput. Phys..

[47]  Philip W Loveday,et al.  Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. , 2009, Ultrasonics.

[48]  Zheng Fan,et al.  Numerical modeling of embedded solid waveguides using SAFE-PML approach using a commercially available finite element package , 2017 .

[49]  L. Knopoff A matrix method for elastic wave problems , 1964 .

[50]  M.J.S. Lowe,et al.  Matrix techniques for modeling ultrasonic waves in multilayered media , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[51]  R. Sanderson A closed form solution method for rapid calculation of guided wave dispersion curves for pipes , 2015 .

[52]  N. Popplewell,et al.  Guided Waves in Thin-Walled Structural Members , 2001 .

[53]  Srinivasan Gopalakrishnan,et al.  A spectrally formulated plate element for wave propagation analysis in anisotropic material , 2005 .

[54]  Dong-Sheng Jeng,et al.  A 2.5-D dynamic model for a saturated porous medium. Part II: Boundary element method , 2008 .

[55]  Ivan Bartoli,et al.  Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method , 2012 .

[56]  J. Lefebvre,et al.  Guided waves in multilayered plates: An improved orthogonal polynomial approach , 2014 .

[57]  B. Mace,et al.  Modelling wave propagation in two-dimensional structures using finite element analysis , 2008 .

[58]  I Bartoli,et al.  A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section. , 2013, Ultrasonics.

[59]  John Lysmer,et al.  A Finite Element Method for Seismology , 1972 .

[60]  Svante Finnveden,et al.  Calculation of wave propagation in rib-stiffened plate structures , 1996 .

[61]  L. Brillouin Wave propagation in periodic structures : electric filters and crystal lattices , 1953 .

[63]  E. Hinton,et al.  Analysis and shape optimisation of variable thickness prismatic folded plates and curved shells — Part 2: Shape optimisation , 1993 .

[64]  Mircea Găvan,et al.  Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. , 2011, Ultrasonics.

[65]  W. Thomson,et al.  Transmission of Elastic Waves through a Stratified Solid Medium , 1950 .

[66]  Takahiro Hayashi,et al.  Wave structure analysis of guided waves in a bar with an arbitrary cross-section. , 2006, Ultrasonics.

[67]  Pawel J. Matuszyk,et al.  Modeling of guided circumferential SH and Lamb-type waves in open waveguides with semi-analytical finite element and Perfectly Matched Layer method , 2017 .

[68]  P. Wilcox,et al.  The effect of load on guided wave propagation. , 2007, Ultrasonics.

[69]  Richard L. Weaver,et al.  Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section , 2004 .

[70]  Ivan Bartoli,et al.  A 2.5D boundary element formulation for modeling damped waves in arbitrary cross-section waveguides and cavities , 2013, J. Comput. Phys..

[71]  M. Lowe,et al.  DISPERSE: A GENERAL PURPOSE PROGRAM FOR CREATING DISPERSION CURVES , 1997 .

[72]  Emiliano Rustighi,et al.  Axisymmetric semi-analytical finite elements for modelling waves in buried/submerged fluid-filled waveguides , 2018 .

[73]  S. Finnveden Evaluation of modal density and group velocity by a finite element method , 2004 .

[74]  E. Kausel Thin‐layer method: Formulation in the time domain , 1994 .

[75]  Hauke Gravenkamp,et al.  A numerical approach for the computation of dispersion relations for plate structures using the Scaled Boundary Finite Element Method , 2012 .

[76]  Zheng Fan,et al.  SAFE-PML approach for modal study of waveguides with arbitrary cross sections immersed in inviscid fluid , 2017 .

[77]  M. Brennan,et al.  Finite element prediction of wave motion in structural waveguides. , 2005, The Journal of the Acoustical Society of America.

[78]  Christophe Hazard,et al.  Numerical modeling of three-dimensional open elastic waveguides combining semi-analytical finite element and perfectly matched layer methods , 2015 .

[79]  Brian R. Mace,et al.  Finite element analysis of the vibrations of waveguides and periodic structures , 2006 .

[80]  M. Bonnet Boundary Integral Equation Methods for Solids and Fluids , 1999 .

[81]  M Castaings,et al.  Torsional waves propagation along a waveguide of arbitrary cross section immersed in a perfect fluid. , 2008, The Journal of the Acoustical Society of America.

[82]  L. Gavric Finite Element Computation of Dispersion Properties of Thin-Walled Waveguides , 1994 .

[83]  I Bartoli,et al.  Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape. , 2014, Ultrasonics.