Computational models: Bottom-up and top-down aspects

Computational models of visual attention have become popular over the past decade, we believe primarily for two reasons: First, models make testable predictions that can be explored by experimentalists as well as theoreticians, second, models have practical and technological applications of interest to the applied science and engineering communities. In this chapter, we take a critical look at recent attention modeling efforts. We focus on {\em computational models of attention} as defined by Tsotsos \& Rothenstein \shortcite{Tsotsos_Rothenstein11}: Models which can process any visual stimulus (typically, an image or video clip), which can possibly also be given some task definition, and which make predictions that can be compared to human or animal behavioral or physiological responses elicited by the same stimulus and task. Thus, we here place less emphasis on abstract models, phenomenological models, purely data-driven fitting or extrapolation models, or models specifically designed for a single task or for a restricted class of stimuli. For theoretical models, we refer the reader to a number of previous reviews that address attention theories and models more generally \cite{Itti_Koch01nrn,Paletta_etal05,Frintrop_etal10,Rothenstein_Tsotsos08,Gottlieb_Balan10,Toet11,Borji_Itti12pami}.

[1]  Nanning Zheng,et al.  Learning to Detect A Salient Object , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  L. Itti,et al.  Modeling the influence of task on attention , 2005, Vision Research.

[3]  Alex D. Hwang,et al.  Semantic guidance of eye movements in real-world scenes , 2011, Vision Research.

[4]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[5]  Francisco Escolano,et al.  How do image complexity, task demands and looking biases influence human gaze behavior? , 2013, Pattern Recognit. Lett..

[6]  John T Serences,et al.  Population response profiles in early visual cortex are biased in favor of more valuable stimuli. , 2010, Journal of neurophysiology.

[7]  B. Tatler,et al.  The prominence of behavioural biases in eye guidance , 2009 .

[8]  Harish Katti,et al.  An Eye Fixation Database for Saliency Detection in Images , 2010, ECCV.

[9]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[10]  C. Koch,et al.  Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. , 2008, Journal of vision.

[11]  Laurent Itti,et al.  Neuromorphic algorithms for computer vision and attention , 2001, SPIE Optics + Photonics.

[12]  Nuno Vasconcelos,et al.  Discriminant Saliency for Visual Recognition from Cluttered Scenes , 2004, NIPS.

[13]  Rongrong Ji,et al.  What are we looking for: Towards statistical modeling of saccadic eye movements and visual saliency , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Michael L. Mack,et al.  VISUAL SALIENCY DOES NOT ACCOUNT FOR EYE MOVEMENTS DURING VISUAL SEARCH IN REAL-WORLD SCENES , 2007 .

[15]  J. Henderson,et al.  Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. , 2009, Journal of vision.

[16]  L. Itti,et al.  Mechanisms of top-down attention , 2011, Trends in Neurosciences.

[17]  Kunio Kashino,et al.  Dynamic Markov random fields for stochastic modeling of visual attention , 2008, 2008 19th International Conference on Pattern Recognition.

[18]  Simone Frintrop,et al.  VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search , 2006, Lecture Notes in Computer Science.

[19]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[20]  Nuno Vasconcelos,et al.  Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Antón García-Díaz,et al.  Decorrelation and Distinctiveness Provide with Human-Like Saliency , 2009, ACIVS.

[23]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[24]  George K. I. Mann,et al.  An object-based visual attention model for robots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  Iain D. Gilchrist,et al.  Visual correlates of fixation selection: effects of scale and time , 2005, Vision Research.

[26]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[27]  Henrik I. Christensen,et al.  Visual Attention Using Game Theory , 2002, Biologically Motivated Computer Vision.

[28]  Liming Zhang,et al.  A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression , 2010, IEEE Transactions on Image Processing.

[29]  Thomas Martinetz,et al.  Variability of eye movements when viewing dynamic natural scenes. , 2010, Journal of vision.

[30]  Nathalie Guyader,et al.  Modelling Spatio-Temporal Saliency to Predict Gaze Direction for Short Videos , 2009, International Journal of Computer Vision.

[31]  Heinz Hügli,et al.  Real-time visual attention on a massively parallel SIMD architecture , 2003, Real Time Imaging.

[32]  Michael Lindenbaum,et al.  Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Christof Koch,et al.  Learning a saliency map using fixated locations in natural scenes. , 2011, Journal of vision.

[34]  R R Mourant,et al.  Mapping Eye-Movement Patterns to the Visual Scene in Driving: An Exploratory Study1 , 1970, Human factors.

[35]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[36]  Ali Borji,et al.  Boosting bottom-up and top-down visual features for saliency estimation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Julio Martinez-Trujillo Searching for the Neural Mechanisms of Feature-Based Attention in the Primate Brain , 2011, Neuron.

[39]  Laurent Itti,et al.  The role of memory in guiding attention during natural vision. , 2006, Journal of vision.

[40]  Asha Iyer,et al.  Components of bottom-up gaze allocation in natural images , 2005, Vision Research.

[41]  Tingting Xu,et al.  Autonomous Behavior-Based Switched Top-Down and Bottom-Up Visual Attention for Mobile Robots , 2010, IEEE Transactions on Robotics.

[42]  Alexandre Pouget,et al.  Paying Attention to Neurons with Discriminating Taste , 2007, Neuron.

[43]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[44]  Liming Zhang,et al.  Biological Plausibility of Spectral Domain Approach for Spatiotemporal Visual Saliency , 2008, ICONIP.

[45]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[46]  Majid Nili Ahmadabadi,et al.  Cost-sensitive learning of top-down modulation for attentional control , 2009, Machine Vision and Applications.

[47]  Lie Lu,et al.  A generic framework of user attention model and its application in video summarization , 2005, IEEE Trans. Multim..

[48]  Laurent Itti,et al.  Congruence between model and human attention reveals unique signatures of critical visual events , 2007, NIPS.

[49]  Mary M Hayhoe,et al.  Visual memory and motor planning in a natural task. , 2003, Journal of vision.

[50]  Majid Nili Ahmadabadi,et al.  Fast Hand gesture recognition based on saliency maps: An application to interactive robotic marionette playing , 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication.

[51]  Bärbel Mertsching,et al.  Fast and Robust Generation of Feature Maps for Region-Based Visual Attention , 2008, IEEE Transactions on Image Processing.

[52]  Alexander Toet,et al.  Computational versus Psychophysical Bottom-Up Image Saliency: A Comparative Evaluation Study , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Robert B. Fisher,et al.  A computer vision model for visual-object-based attention and eye movements , 2008, Comput. Vis. Image Underst..

[54]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[55]  Franz Kummert,et al.  Directed attention - a cognitive vision system for a mobile robot , 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication.

[56]  Hoi-Jun Yoo,et al.  A 345 mW Heterogeneous Many-Core Processor With an Intelligent Inference Engine for Robust Object Recognition , 2011, IEEE Journal of Solid-State Circuits.

[57]  Christof Koch,et al.  Visual attention and target detection in cluttered natural scenes , 2001 .

[58]  L. Robertson Binding, spatial attention and perceptual awareness , 2003, Nature Reviews Neuroscience.

[59]  Michael A. Arbib,et al.  The Organization of Action-Oriented Memory for a Perceiving System. Part I: The Basic Model , 1971 .

[60]  Brian Scassellati,et al.  A Behavioral Analysis of Computational Models of Visual Attention , 2007, International Journal of Computer Vision.

[61]  J. Theeuwes Top-down and bottom-up control of visual selection. , 2010, Acta psychologica.

[62]  Henrik I. Christensen,et al.  Computational visual attention systems and their cognitive foundations: A survey , 2010, TAP.

[63]  A. Treisman,et al.  Search asymmetry: a diagnostic for preattentive processing of separable features. , 1985, Journal of experimental psychology. General.

[64]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[65]  Bernhard Schölkopf,et al.  A Nonparametric Approach to Bottom-Up Visual Saliency , 2006, NIPS.

[66]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[67]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[68]  T. Foulsham,et al.  How Does the Purpose of Inspection Influence the Potency of Visual Salience in Scene Perception? , 2007, Perception.

[69]  Ali Borji,et al.  An Object-Based Bayesian Framework for Top-Down Visual Attention , 2012, AAAI.

[70]  Albert Ali Salah,et al.  A Selective Attention-Based Method for Visual Pattern Recognition with Application to Handwritten Digit Recognition and Face Recognition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Mohan M. Trivedi,et al.  Attention estimation by simultaneous observation of viewer and view , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[72]  Ali Borji,et al.  What/Where to Look Next? Modeling Top-Down Visual Attention in Complex Interactive Environments , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[73]  Lucas Paletta,et al.  Attention Architectures for Machine Vision and Mobile Robots , 2005 .

[74]  Rajesh P. N. Rao,et al.  Eye movements in iconic visual search , 2002, Vision Research.

[75]  Fei-Fei Li,et al.  OPTIMOL: Automatic Online Picture Collection via Incremental Model Learning , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  C. Koch,et al.  Faces and text attract gaze independent of the task: Experimental data and computer model. , 2009, Journal of vision.

[77]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[78]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[79]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[80]  Christof Koch,et al.  Feature combination strategies for saliency-based visual attention systems , 2001, J. Electronic Imaging.

[81]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[83]  Laurent Itti,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Rapid Biologically-inspired Scene Classification Using Features Shared with Visual Attention , 2022 .

[84]  Michael F. Land,et al.  From eye movements to actions: how batsmen hit the ball , 2000, Nature Neuroscience.

[85]  Gerhard Krieger,et al.  Scene analysis with saccadic eye movements: Top-down and bottom-up modeling , 2001, J. Electronic Imaging.

[86]  M. Hayhoe,et al.  In what ways do eye movements contribute to everyday activities? , 2001, Vision Research.

[87]  Pierre Baldi,et al.  A principled approach to detecting surprising events in video , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[88]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[89]  J. Henderson,et al.  High-level scene perception. , 1999, Annual review of psychology.

[90]  Alan C. Bovik,et al.  GAFFE: A Gaze-Attentive Fixation Finding Engine , 2008, IEEE Transactions on Image Processing.

[91]  Javier R. Movellan,et al.  Optimal scanning for faster object detection , 2009, CVPR.

[92]  Tom Foulsham,et al.  "Eyes Closed" and "Eyes Open" Expectations Guide Fixations in Real-World Search , 2012, CogSci.

[93]  Gert Kootstra,et al.  Paying Attention to Symmetry , 2008, BMVC.

[94]  Claudio M. Privitera,et al.  Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[95]  Robert Desimone,et al.  Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search , 2011, Neuron.

[96]  Liqing Zhang,et al.  Dynamic visual attention: searching for coding length increments , 2008, NIPS.

[97]  John K. Tsotsos,et al.  Computational models of visual attention , 2011, Vision Research.

[98]  I. Rybak,et al.  A model of attention-guided visual perception and recognition , 1998, Vision Research.

[99]  Lars Kai Hansen,et al.  What to measure next to improve decision making? On top-down task driven feature saliency , 2011, 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB).

[100]  Giulio Sandini,et al.  Object-based Visual Attention: a Model for a Behaving Robot , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[101]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[102]  Bryan Reimer,et al.  On-road driver eye movement tracking using head-mounted devices , 2002, ETRA.

[103]  Uri Hasson,et al.  Temporal eye movement strategies during naturalistic viewing. , 2012, Journal of vision.

[104]  Laurent Itti,et al.  Realistic avatar eye and head animation using a neurobiological model of visual attention , 2004, SPIE Optics + Photonics.

[105]  Andrew McCallum,et al.  Reinforcement learning with selective perception and hidden state , 1996 .

[106]  L. Stark,et al.  Scanpaths in Eye Movements during Pattern Perception , 1971, Science.

[107]  Kunio Kashino,et al.  A stochastic model of selective visual attention with a dynamic Bayesian network , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[108]  Yin Li,et al.  Visual Saliency Based on Conditional Entropy , 2009, ACCV.

[109]  Silvia Rossi,et al.  Attentional Modulation of Mutually Dependent Behaviors , 2010, SAB.

[110]  K. Cave The FeatureGate model of visual selection , 1999, Psychological research.

[111]  Jeremy M Wolfe,et al.  Visual Attention , 2020, Computational Models for Cognitive Vision.

[112]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[113]  Anling Rao,et al.  Biasing Perception by Spatial Long-Term Memory , 2011, The Journal of Neuroscience.

[114]  G. Zelinsky,et al.  Short article: Search guidance is proportional to the categorical specificity of a target cue , 2009, Quarterly journal of experimental psychology.

[115]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[116]  P. McOwan,et al.  Generating customised experimental stimuli for visual search using Genetic Algorithms shows evidence for a continuum of search efficiency , 2009, Vision Research.

[117]  Wen Gao,et al.  Multi-Task Rank Learning for Visual Saliency Estimation , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[118]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[119]  Michelle R. Greene,et al.  Reconsidering Yarbus: A failure to predict observers’ task from eye movement patterns , 2012, Vision Research.

[120]  Matthew F. Peterson,et al.  Statistical decision theory to relate neurons to behavior in the study of covert visual attention , 2009, Vision Research.

[121]  Puiu F. Balan,et al.  Attention as a decision in information space , 2010, Trends in Cognitive Sciences.

[122]  Fiora Pirri,et al.  Robot task-driven attention , 2006, PCAR '06.

[123]  Akisato Kimura,et al.  Fully Automatic Extraction of Salient Objects from Videos in Near Real Time , 2010, Comput. J..

[124]  J. Theeuwes,et al.  Top-down versus bottom-up attentional control: a failed theoretical dichotomy , 2012, Trends in Cognitive Sciences.

[125]  Thierry Pun,et al.  Integration of bottom-up and top-down cues for visual attention using non-linear relaxation , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[126]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[127]  L. Itti,et al.  Search Goal Tunes Visual Features Optimally , 2007, Neuron.

[128]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  Majid Nili Ahmadabadi,et al.  Online learning of task-driven object-based visual attention control , 2010, Image Vis. Comput..

[130]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[131]  Dana H. Ballard,et al.  Eye Movements for Reward Maximization , 2003, NIPS.

[132]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[133]  Laurent Itti,et al.  Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[134]  D. Ballard,et al.  Eye guidance in natural vision: reinterpreting salience. , 2011, Journal of vision.

[135]  Christof Koch,et al.  Predicting human gaze using low-level saliency combined with face detection , 2007, NIPS.

[136]  Matthew H Tong,et al.  of the Annual Meeting of the Cognitive Science Society Title SUNDAy : Saliency Using Natural Statistics for Dynamic Analysis of Scenes Permalink , 2009 .

[137]  Antonio Torralba,et al.  Modeling global scene factors in attention. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[138]  Simone Frintrop,et al.  Goal-Directed Search with a Top-Down Modulated Computational Attention System , 2005, DAGM-Symposium.

[139]  Krista A. Ehinger,et al.  Modelling search for people in 900 scenes: A combined source model of eye guidance , 2009 .

[140]  Rajesh P. N. Rao,et al.  Modeling Saccadic Targeting in Visual Search , 1995, NIPS.

[141]  A. Allport Attention and control: have we been asking the wrong questions? A critical review of twenty-five years , 1993 .

[142]  L. Itti Quantitative modelling of perceptual salience at human eye position , 2006 .

[143]  Nuno Vasconcelos,et al.  Spatiotemporal Saliency in Dynamic Scenes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[144]  James J. Little,et al.  Informed visual search: Combining attention and object recognition , 2008, 2008 IEEE International Conference on Robotics and Automation.

[145]  D. Ballard,et al.  Memory Representations in Natural Tasks , 1995, Journal of Cognitive Neuroscience.

[146]  Zhigang Deng,et al.  Natural Eye Motion Synthesis by Modeling Gaze-Head Coupling , 2009, 2009 IEEE Virtual Reality Conference.

[147]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[148]  Liming Zhang,et al.  Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[149]  Ali Borji,et al.  Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study , 2013, IEEE Transactions on Image Processing.

[150]  Jitendra Malik,et al.  An Information Maximization Model of Eye Movements , 2004, NIPS.

[151]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[152]  Yuan Yao,et al.  Simulating human saccadic scanpaths on natural images , 2011, CVPR 2011.

[153]  Wei Zhang,et al.  The Role of Top-down and Bottom-up Processes in Guiding Eye Movements during Visual Search , 2005, NIPS.

[154]  George K. I. Mann,et al.  A Goal-Directed Visual Perception System Using Object-Based Top–Down Attention , 2012, IEEE Transactions on Autonomous Mental Development.

[155]  Ronald A. Rensink The Dynamic Representation of Scenes , 2000 .

[156]  Michael A. Arbib,et al.  Attention and Scene Understanding , 2005 .

[157]  Minho Lee,et al.  Top-down visual selective attention model combined with bottom-up saliency map for incremental object perception , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[158]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[159]  Javier R. Movellan,et al.  Optimal scanning for faster object detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[160]  Giuseppe Boccignone,et al.  Modelling gaze shift as a constrained random walk , 2004 .

[161]  Esa Rahtu,et al.  Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation , 2011, SCIA.

[162]  Patrick Le Callet,et al.  A coherent computational approach to model bottom-up visual attention , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[163]  L. Itti,et al.  Quantifying center bias of observers in free viewing of dynamic natural scenes. , 2009, Journal of vision.

[164]  C. Frith,et al.  Shifting baselines in attention research , 2000, Nature Reviews Neuroscience.

[165]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[166]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[167]  Justus H. Piater,et al.  Closed-Loop Learning of Visual Control Policies , 2011, J. Artif. Intell. Res..

[168]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[169]  R. Desimone,et al.  The Role of Neural Mechanisms of Attention in Solving the Binding Problem , 1999, Neuron.

[170]  Ali Borji,et al.  Exploiting local and global patch rarities for saliency detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[171]  Minho Lee,et al.  Dynamic visual selective attention model , 2008, Neurocomputing.

[172]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[173]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[174]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[175]  John K. Tsotsos,et al.  Attention links sensing to recognition , 2008, Image Vis. Comput..

[176]  T. Poggio,et al.  What and where: A Bayesian inference theory of attention , 2010, Vision Research.