Melting behavior of copper nanocrystals encapsulated in onion-like carbon cages

[1]  P. Ajayan,et al.  The migration of metal atoms through carbon onions , 1998 .

[2]  Andreas Greiner,et al.  Copper nanoparticles encapsulated in multi-shell carbon cages , 2004 .

[3]  L. Trusov,et al.  Size effects in micromechanics of nanocrystals , 1993 .

[4]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[5]  Iijima,et al.  Structural instability of ultrafine particles of metals. , 1986, Physical review letters.

[6]  Denier van der Gon AW,et al.  Crystal-face dependence of surface melting. , 1987, Physical review letters.

[7]  G. Padeletti,et al.  How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period , 2003 .

[8]  David J. Smith,et al.  Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy , 1985, Nature.

[9]  M. Born Thermodynamics of Crystals and Melting , 1939 .

[10]  J. Heyraud,et al.  The overheating of lead crystals , 1989 .

[11]  T. Ichihashi,et al.  Motion of Surface Atoms on Small Gold Particles Revealed by HREM with Real-Time VTR System , 1985 .

[12]  J. G. Dash History of the search for continuous melting , 1999 .

[13]  Barnett,et al.  Surface premelting of Cu(110). , 1991, Physical review. B, Condensed matter.

[14]  Pietronero,et al.  Surface melting of copper. , 1985, Physical review. B, Condensed matter.

[15]  Donnelly,et al.  Superheating of small solid-argon bubbles in aluminum. , 1985, Physical review letters.

[16]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[17]  F. Banhart,et al.  Extreme superheating and supercooling of encapsulated metals in fullerenelike shells. , 2003, Physical review letters.

[18]  Zhong Lin Wang,et al.  Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres , 1996 .

[19]  E. Menzel,et al.  Probing the surface melt of copper crystals , 1978 .

[20]  P. Serp,et al.  A chemical vapour deposition process for the production of carbon nanospheres , 2001 .

[21]  Robert W. Cahn,et al.  Materials science: Melting from within , 2001, Nature.

[22]  A. Greiner,et al.  Carbon Nanotubes and Spheres Produced by Modified Ferrocene Pyrolysis , 2002 .

[23]  P. Gumbsch,et al.  Melting mechanisms at the limit of superheating. , 2001, Physical review letters.

[24]  Landman,et al.  Superheating, melting, and annealing of copper surfaces. , 1993, Physical review letters.

[25]  E. Wendler,et al.  Silver diffusion and precipitation of nanoparticles in glass by ion implantation , 2003 .

[26]  Pulickel M. Ajayan,et al.  The formation, annealing and self-compression of carbon onions under electron irradiation , 1997 .

[27]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[28]  Breuer,et al.  Anisotropy of the order-disorder phase transition on the Pb(110) surface. , 1988, Physical review letters.

[29]  J. Boyce,et al.  Orientational ordering and melting of molecular H2 in an a-Si matrix: NMR studies. , 1985, Physical review letters.

[30]  P. Ajayan,et al.  Metal atoms in carbon nanotubes and related nanoparticles , 2001 .

[31]  Robert W. Cahn,et al.  Materials science: Melting and the surface , 1986, Nature.

[32]  Manninen,et al.  Computer simulation of disordering and premelting of low-index faces of copper. , 1992, Physical review. B, Condensed matter.

[33]  A. Petford-Long,et al.  Dynamic Atomic-Level Rearrangements in Small Gold Particles , 1986, Science.

[34]  J. Frenken,et al.  Observation of surface melting. , 1985, Physical review letters.

[35]  J. Frenken,et al.  Observation of surface-initiated melting. , 1986, Physical review. B, Condensed matter.