Data assimilation retrieval of electron density profiles from radio occultation measurements [presentation]

[1] In this paper, the Kalman filter is used to retrieve the electron density profile along the tangent points by assimilating the slant total electron content data observed during a radio occultation (RO) event into an empirical background model. The RO data observed by COSMIC satellites on day of year 266 in 2009 are selected to do both the simulation work and the real data retrieval test. The results show that the data assimilation technique can improve the electron density retrieval in comparison with the Abel inversion. It is less influenced by the ionospheric inhomogeneity than the Abel method. Some pseudo‐large‐scale features made by the Abel retrieval, such as the plasma cave underneath the equatorial ionization anomaly region and the three peaks along the latitude direction in the E layer, disappear in the data assimilation retrieval results. Independent validation by ground‐based ionosonde observations confirms the improvement of data assimilation retrieval below the F2 peak. In addition, some potential research on RO data assimilation is also discussed.

[1]  Paul Richard Straus,et al.  Ionospheric climatology derived from gps occultation observations made by the ionospheric occultation experiment , 2005 .

[2]  Xinan Yue,et al.  Error analysis of Abel retrieved electron density profiles from radio occultation measurements , 2010 .

[3]  Timothy Fuller-Rowell,et al.  Global Assimilation of Ionospheric Measurements (GAIM) , 2001 .

[4]  Thomas L. Gaussiran,et al.  Ionospheric Data Assimilation Three‐Dimensional (IDA3D): A global, multisensor, electron density specification algorithm , 2004 .

[5]  P. Straus Ionospheric climatology derived from gps occultation observations made by the ionospheric occultation experiment , 2005 .

[6]  Robert W. Schunk,et al.  Ionospheric dynamics and drivers obtained from a physics‐based data assimilation model , 2009 .

[7]  Christian Rocken,et al.  Analysis and validation of GPS/MET radio occultation data in the ionosphere , 1999 .

[8]  Xiaoqing Pi,et al.  Development of the Global Assimilative Ionospheric Model , 2004 .

[9]  Xinan Yue,et al.  Data assimilation of incoherent scatter radar observation into a one‐dimensional midlatitude ionospheric model by applying ensemble Kalman filter , 2007 .

[10]  D. L. Hysell,et al.  Inverting ionospheric radio occultation measurements using maximum entropy , 2007 .

[11]  Xinan Yue,et al.  Artificial ionospheric wave number 4 structure below the F2 region due to the Abel retrieval of radio occultation measurements , 2010, GPS Solutions.

[12]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[13]  Larry J. Romans,et al.  Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment , 1998 .

[14]  Sandro M. Radicella,et al.  Electron density models for assessment studies - New developments , 2002 .

[15]  J. Lei,et al.  Comment on "A new aspect of ionospheric E region electron density morphology" by Yen-Hsyang Chu, Kong-Hong Wu, and Ching-Lun Su , 2010 .

[16]  Volker Wilken,et al.  Space weather monitoring by GPS measurements on board CHAMP , 2007 .

[17]  Harald U. Frey,et al.  Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV , 2005 .

[18]  Christian Rocken,et al.  COSMIC System Description , 2000 .

[19]  G. Bust,et al.  Estimating E region density profiles from radio occultation measurements assisted by IDA4D , 2009 .

[20]  Douglas Hunt,et al.  Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission , 2007 .

[21]  M. Angling First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM) , 2008 .

[22]  S. Syndergaard,et al.  Preparing for COSMIC: Inversion and Analysis of Ionospheric Data Products , 2006 .

[23]  Ivan A. Galkin,et al.  Automated collection and dissemination of ionospheric data from the digisonde network , 2005 .

[24]  Jaume Sanz,et al.  Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding , 2000 .

[25]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[26]  H. Le,et al.  Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment , 2008 .

[27]  Xiaoqing Pi,et al.  JPL/USC GAIM: On the impact of using COSMIC and ground‐based GPS measurements to estimate ionospheric parameters , 2010 .

[28]  Jaume Sanz,et al.  Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information , 2003 .

[29]  L. Grunwaldt,et al.  GPS radio occultation measurements of the ionosphere from CHAMP: Early results , 2002 .

[30]  Norbert Jakowski Ionospheric GPS radio occultation measurements on board CHAMP , 2005 .

[31]  W. H. Tsai,et al.  Improvement of GPS/MET Ionospheric Profiling and Validation Using the Chung-Li Ionosonde Measurements and the IRI model , 2004 .

[32]  Xiaoqing Pi,et al.  Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements , 2009 .

[33]  Y. Chu,et al.  A new aspect of ionospheric E region electron density morphology , 2009 .

[34]  Ying-Hwa Kuo,et al.  Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions : Preliminary results , 2007 .

[35]  K. Hocke,et al.  Electron density in the F region derived from GPS/MET radio occultation data and comparison with IRI , 2002 .

[36]  W. Wan,et al.  Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations , 2007 .