Secondary electrons detectors for beam tracking: micromegas and wire chamber

SPIRAL2 or FAIR will be able to deliver beams of radioactive isotopes of low energy (less than 10 MeV/n). The emittance of these new beams will impose the use of beam tracking detectors to reconstruct the exact impact position of the nuclei on the experimental target. However, due to their thickness, the classical detectors will generate a lot of energy and angular straggling. A possible alternative is the SED principle (Secondary Electron Detector). It consists of an emissive foil placed in beam and a detector for the secondary electrons ejected by the passing of the nuclei through the foil. An R&D program has been initiated at CEA Saclay to study the possibility to use low pressure gaseous detectors as SED for beam tracking. Some SED have been already used on the VAMOS spectrometer at GANIL since 2004. We have constructed new detectors on this model to measure their performances in time and spatial resolution, and counting rate. Other detector types are also under study. For the first time, a test with different micromegas detectors at 4 Torr has been realized. A comparison on the time resolution has been performed between wire chamber and micromegas at very low pressure. The use of micromegas could be promising to improve the counting rate capability and the robustness of beam tracking detectors.