Anomalous Subthreshold Behaviors in Negative Capacitance Transistors

Recent measurements on ultra-thin body Negative Capacitance Field Effect Transistors have shown subthreshold behaviors that are not expected in a classical MOSFET. Specifically, subthreshold swing was found to decrease with increased gate bias in the subthreshold region for devices measured over multiple gate lengths down to 30 nm. In addition, improvement in the subthreshold swing relative to control devices showed a non-monotonic dependence on the gate length. In this paper, using a Landau-Khanatnikov ferroelectric gate stack model calibrated with measured Capacitance-Voltage, we show that both these anomalous behaviors can be quantitatively reproduced with TCAD simulations.

[1]  C. Hu,et al.  Near Threshold Capacitance Matching in a Negative Capacitance FET With 1 nm Effective Oxide Thickness Gate Stack , 2020, IEEE Electron Device Letters.

[2]  C. Hu,et al.  Anomalously Beneficial Gate-Length Scaling Trend of Negative Capacitance Transistors , 2019, IEEE Electron Device Letters.

[3]  C. Hu,et al.  Negative Capacitance FET With 1.8-nm-Thick Zr-Doped HfO2 Oxide , 2019, IEEE Electron Device Letters.

[4]  C. Hu,et al.  Analysis and Modeling of Inner Fringing Field Effect on Negative Capacitance FinFETs , 2019, IEEE Transactions on Electron Devices.

[5]  C. Hu,et al.  Proposal for Capacitance Matching in Negative Capacitance Field-Effect Transistors , 2019, IEEE Electron Device Letters.

[6]  Michael Hoffmann,et al.  Unveiling the double-well energy landscape in a ferroelectric layer , 2019, Nature.

[7]  Sayeef Salahuddin,et al.  Negative Capacitance Transistors , 2018, Proceedings of the IEEE.

[8]  C. Hu,et al.  Designing 0.5 V 5-nm HP and 0.23 V 5-nm LP NC-FinFETs With Improved ${I}_{ \mathrm{\scriptscriptstyle OFF}}$ Sensitivity in Presence of Parasitic Capacitance , 2018, IEEE Transactions on Electron Devices.

[9]  Mengwei Si,et al.  Hysteresis-free negative capacitance germanium CMOS FinFETs with Bi-directional Sub-60 mV/dec , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[10]  R. Sporer,et al.  14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[11]  P. Zhou,et al.  Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[12]  Asif Islam Khan,et al.  Work Function Engineering for Performance Improvement in Leaky Negative Capacitance FETs , 2017, IEEE Electron Device Letters.

[13]  Yue Peng,et al.  Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[14]  Asif Islam Khan,et al.  Negative Capacitance Behavior in a Leaky Ferroelectric , 2016, IEEE Transactions on Electron Devices.

[15]  Uwe Schroeder,et al.  On the structural origins of ferroelectricity in HfO2 thin films , 2015 .

[16]  Thomas Mikolajick,et al.  Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films , 2015, Advanced materials.

[17]  Sayeef Salahuddin,et al.  Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. , 2014, Nano letters.

[18]  C. Hu,et al.  Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation , 2011, 2011 International Electron Devices Meeting.

[19]  Chin-Lung Kuo,et al.  First principles study of the structural, electronic, and dielectric properties of amorphous HfO2 , 2011 .

[20]  S. Datta,et al.  Can the subthreshold swing in a classical FET be lowered below 60 mV/decade? , 2008, 2008 IEEE International Electron Devices Meeting.

[21]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[22]  A. Kersch,et al.  The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles , 2008 .

[23]  G. M. Rao,et al.  Effects of O vacancies and C doping on dielectric properties of ZrO2: A first-principles study , 2006 .

[24]  G. Rignanese,et al.  First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium , 2004 .

[25]  Astronomy,et al.  Amorphous ZrO2 from Ab-initio molecular dynamics: Structural, electronic and dielectric properties , 2004, cond-mat/0403131.

[26]  D. Vanderbilt,et al.  Structural, electronic, and dielectric properties of amorphous ZrO2 from ab initio molecular dynamics , 2005 .