Understanding the C  H activation of methane over single‐atom alloy catalysts by density functional theory calculations

[1]  Peter S. Rice,et al.  Understanding and tackling the activity and selectivity issues for methane to methanol using single atom alloys. , 2022, Chemical communications.

[2]  M. Fan,et al.  Ethane dehydrogenation over the single-atom alloy catalysts: Screening out the excellent catalyst with the dual descriptors , 2021 .

[3]  Shaobin Wang,et al.  Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. , 2021, Journal of hazardous materials.

[4]  Mohammed J. Islam,et al.  PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural , 2021 .

[5]  F. Lou,et al.  Single transition metal atom embedded antimonene monolayers as efficient trifunctional electrocatalysts for the HER, OER and ORR: a density functional theory study. , 2021, Nanoscale.

[6]  Jinlong Gong,et al.  Origin of Performances of Pt/Cu Single-Atom Alloy Catalysts for Propane Dehydrogenation , 2021, The Journal of Physical Chemistry C.

[7]  P. Sautet,et al.  Formation of a Ti-Cu(111) single atom alloy: Structure and CO binding. , 2021, The Journal of chemical physics.

[8]  D. Tichit,et al.  Mapping surface segregation of single-atom Pt dispersed in M surfaces (M = Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under hydrogen pressure at various temperatures , 2021 .

[9]  Chunyong He,et al.  A Tensile‐Strained Pt–Rh Single‐Atom Alloy Remarkably Boosts Ethanol Oxidation , 2021, Advanced materials.

[10]  Huiyan Yan,et al.  Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: single atom versus small cluster , 2021 .

[11]  K. Tomishige,et al.  Comprehensive Study on Ni- or Ir-Based Alloy Catalysts in the Hydrogenation of Olefins and Mechanistic Insight , 2021 .

[12]  S. H. Mushrif,et al.  Novel Nickel-Based Single-Atom Alloy Catalyst for CO2 Conversion Reactions: Computational Screening and Reaction Mechanism Analysis , 2021 .

[13]  Xingwang Zhang,et al.  High-Throughput Screening of a Single-Atom Alloy for Electroreduction of Dinitrogen to Ammonia. , 2021, ACS applied materials & interfaces.

[14]  Jihong Yu,et al.  Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. , 2020, Chemical Society reviews.

[15]  P. Ma,et al.  CO oxidation on Ni-based single-atom alloys surfaces , 2020 .

[16]  M. Stamatakis,et al.  Controlling Hydrocarbon (De)Hydrogenation Pathways with Bifunctional PtCu Single-Atom Alloys. , 2020, The journal of physical chemistry letters.

[17]  G. Giannakakis,et al.  Single-Atom Alloy Catalysis. , 2020, Chemical reviews.

[18]  Chuanmin Ding,et al.  Adsorption of Pd on the Cu(1 1 1) surface and its catalysis of methane partial oxidation: A density functional theory study , 2020 .

[19]  S. Levchenko,et al.  Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence , 2020, Nature Communications.

[20]  Chuanmin Ding,et al.  Theoretical research on a coke-resistant catalyst for the partial oxidation of methane: Pt/Cu single-atom alloys , 2020 .

[21]  Dayne F. Swearer,et al.  Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts , 2020 .

[22]  M. Stamatakis,et al.  Efficient and selective carbon-carbon coupling on coke-resistant PdAu single-atom alloys. , 2019, Chemical communications.

[23]  E. Sykes,et al.  Atomic-Scale Surface Structure and CO Tolerance of NiCu Single-Atom Alloys , 2019, The Journal of Physical Chemistry C.

[24]  Yang Zhao,et al.  Pt/Pd Single-Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Enhanced Activity , 2019, ACS Catalysis.

[25]  Jianmin Lu,et al.  Single Atom Alloy Preparation and Applications in Heterogeneous Catalysis , 2019, Chinese Journal of Chemistry.

[26]  W. An,et al.  Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: mechanism, kinetics and descriptor , 2019, Catalysis Science & Technology.

[27]  G. Giannakakis,et al.  Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. , 2018, Accounts of chemical research.

[28]  Matthew T. Darby,et al.  Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys. , 2018, The journal of physical chemistry letters.

[29]  M. Flytzani-Stephanopoulos,et al.  NiCu single atom alloys catalyze the C H bond activation in the selective non- oxidative ethanol dehydrogenation reaction , 2018, Applied Catalysis B: Environmental.

[30]  Matthew T. Darby,et al.  Elucidating the Stability and Reactivity of Surface Intermediates on Single-Atom Alloy Catalysts , 2018 .

[31]  J. Kitchin,et al.  Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory , 2018, Topics in Catalysis.

[32]  Matthew T. Darby,et al.  Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys , 2018, Topics in Catalysis.

[33]  Matthew T. Darby,et al.  Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. , 2018, Nature chemistry.

[34]  Jens K Nørskov,et al.  Understanding trends in C-H bond activation in heterogeneous catalysis. , 2017, Nature materials.

[35]  M. Head‐Gordon,et al.  Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons , 2016 .

[36]  E. Sykes,et al.  Atomic Scale Surface Structure of Pt/Cu(111) Surface Alloys , 2014 .

[37]  M. Cordeiro,et al.  Water Dissociation on Bimetallic Surfaces: General Trends , 2012 .

[38]  Matthew Neurock,et al.  Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. , 2010, Chemical reviews.

[39]  A. Kiejna,et al.  Segregation of Cr impurities at bcc iron surfaces: First-principles calculations , 2008 .

[40]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[41]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[42]  A. Alavi,et al.  Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. , 2003, Journal of the American Chemical Society.

[43]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[44]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[45]  A. Ramírez-Solís,et al.  AB INITIO STUDY OF THE REACTIONS OF ZN(1S, 3P, AND 1P) WITH SIH4 , 1997 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  Malcolm L. H. Green,et al.  Recent advances in the conversion of methane to synthesis gas , 1995 .

[49]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[50]  G. Kramer,et al.  Understanding the acid behaviour of zeolites from theory and experiment , 1993, Nature.

[51]  John J. Carroll,et al.  Reactions of neutral palladium atoms in the gas phase: Formation of stable Pd(alkane) complexes at 300 K , 1993 .

[52]  J. Gomes,et al.  Catalytic reactions for H2 production on multimetallic surfaces: a review , 2021, Journal of Physics: Energy.