OpenIMAJ and ImageTerrier: Java libraries and tools for scalable multimedia analysis and indexing of images

OpenIMAJ and ImageTerrier are recently released open-source libraries and tools for experimentation and development of multimedia applications using Java-compatible programming languages. OpenIMAJ (the Open toolkit for Intelligent Multimedia Analysis in Java) is a collection of libraries for multimedia analysis. The image libraries contain methods for processing images and extracting state-of-the-art features, including SIFT. The video and audio libraries support both cross-platform capture and processing. The clustering and nearest-neighbour libraries contain efficient, multi-threaded implementations of clustering algorithms. The clustering library makes it possible to easily create BoVW representations for images and videos. OpenIMAJ also incorporates a number of tools to enable extremely-large-scale multimedia analysis using distributed computing with Apache Hadoop. ImageTerrier is a scalable, high-performance search engine platform for content-based image retrieval applications using features extracted with the OpenIMAJ library and tools. The ImageTerrier platform provides a comprehensive test-bed for experimenting with image retrieval techniques. The platform incorporates a state-of-the-art implementation of the single-pass indexing technique for constructing inverted indexes and is capable of producing highly compressed index data structures.

[1]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[5]  Ben He,et al.  Terrier : A High Performance and Scalable Information Retrieval Platform , 2022 .