Identify mechanisms of amblyopia in Gabor orientation identification with external noise

In this study, we applied the external noise method and the PTM model to identify mechanisms underlying performance deficits in amblyopia. Amblyopic and normal observers performed a Gabor orientation identification task in fovea. White external noise was added to the Gabor stimuli. Threshold versus external noise contrast (TvC) functions were measured at two performance criterion levels. For a subset of observers, we also manipulated the center spatial frequency of the Gabor. We found that two independent factors contributed to amblyopic deficits: (1) increased additive internal noise, and (2) deficient perceptual templates. Whereas increased additive noise underlay performance deficits in all spatial frequencies, the degree of perceptual template deterioration increased with the center spatial frequency of the Gabor.

[1]  Zhong-Lin Lu,et al.  Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors , 2003, Journal of Neuroscience Methods.

[2]  W. Singer,et al.  Ocular dominance in extrastriate cortex of strabismic amblyopic cats , 2002, Vision Research.

[3]  A J Ahumada,et al.  Equivalent-noise model for contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[4]  S. Crewther,et al.  Neural site of strabismic amblyopia in cats: spatial frequency deficit in primary cortical neurons , 2004, Experimental Brain Research.

[5]  Z L Lu,et al.  Characterizing the spatial-frequency sensitivity of perceptual templates. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  B. Dosher,et al.  Mechanisms of perceptual learning , 1999, Vision Research.

[7]  A E Burgess,et al.  Visual signal detection. IV. Observer inconsistency. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[8]  Z L Lu,et al.  Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Arthur E. Burgess,et al.  Noise in Imaging Systems and Human Vision , 1999 .

[10]  Denis G Pelli,et al.  Using visual noise to characterize amblyopic letter identification. , 2004, Journal of vision.

[11]  L. Maloney Confidence intervals for the parameters of psychometric functions , 1990, Perception & psychophysics.

[12]  B. Dosher,et al.  PSYCHOLOGICAL SCIENCE Research Article NOISE EXCLUSION IN SPATIAL ATTENTION , 2022 .

[13]  M P Eckstein,et al.  Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  J A Movshon,et al.  Effects of early unilateral blur on the macaque's visual system. I. Behavioral observations , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Vision Research , 1961, Nature.

[16]  R. Hess Developmental sensory impairment: amblyopia or tarachopia? , 1982, Human neurobiology.

[17]  Gordon E Legge,et al.  Spatial-frequency properties of letter identification in amblyopia , 2002, Vision Research.

[18]  L. P. O'Keefe,et al.  Neuronal Correlates of Amblyopia in the Visual Cortex of Macaque Monkeys with Experimental Strabismus and Anisometropia , 1998, The Journal of Neuroscience.

[19]  G. Legge,et al.  Contrast discrimination in noise. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[20]  Miguel P Eckstein,et al.  Classification images: a tool to analyze visual strategies. , 2002, Journal of vision.

[21]  R. Freeman,et al.  Contrast sensitivity in amblyopia: masking effects of noise. , 1992, Investigative ophthalmology & visual science.

[22]  G. A. Hay,et al.  Signal-transfer funcions in threshold and suprathreshold vision. , 1972, Journal of the Optical Society of America.

[23]  Luis A. Lesmes,et al.  Spatial attention excludes external noise at the target location. , 2002, Journal of vision.

[24]  H. Barlow,et al.  The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures , 1981, Vision Research.

[25]  B. Dosher,et al.  Characterizing observers using external noise and observer models: assessing internal representations with external noise. , 2008, Psychological review.

[26]  A. B. Sekuler,et al.  Signal but not noise changes with perceptual learning , 1999, Nature.

[27]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[28]  Ian E. Holliday,et al.  The spatial localization deficit in amblyopia , 1992, Vision Research.

[29]  H. Onoe,et al.  Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia , 1997, Neuroscience Letters.

[30]  Wendy L. Braje,et al.  Human efficiency for recognizing 3-D objects in luminance noise , 1995, Vision Research.

[31]  S. Klein,et al.  Spatial uncertainty and sampling efficiency in amblyopic position acuity , 1998, Vision Research.

[32]  J Anthony Movshon,et al.  The pattern of visual deficits in amblyopia. , 2003, Journal of vision.

[33]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[34]  R. Hess,et al.  Integration of orientation information in amblyopia , 2004, Vision Research.

[35]  N W Daw,et al.  Critical periods and amblyopia. , 1998, Archives of ophthalmology.

[36]  Lynne Kiorpes,et al.  Neural mechanisms underlying amblyopia , 1999, Current Opinion in Neurobiology.

[37]  Kenneth Knoblauch,et al.  Spectral bandwidths for the detection of color , 1998, Vision Research.

[38]  B. Dosher,et al.  Characterizing human perceptual inefficiencies with equivalent internal noise. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  D. Pelli The quantum efficiency of vision , 1990 .

[40]  C. Blakemore,et al.  Physiological basis of anisometropic amblyopia. , 1978, Science.

[41]  B. Dosher,et al.  The dynamics of perceptual learning: an incremental reweighting model. , 2005, Psychological review.

[42]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[43]  Dennis M Levi,et al.  Noise Provides Some New Signals About the Spatial Vision of Amblyopes , 2003, The Journal of Neuroscience.

[44]  H. Barlow Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.

[45]  David J. Field,et al.  Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? , 1994, Vision Research.

[46]  R F Hess,et al.  The cortical deficit in humans with strabismic amblyopia , 2001, The Journal of physiology.

[47]  B. Dosher,et al.  Mechanisms of perceptual attention in precuing of location , 2000, Vision Research.

[48]  Zhong-Lin Lu,et al.  Spatial attention excludes external noise without changing the spatial frequency tuning of the perceptual template. , 2004, Journal of vision.

[49]  B. Dosher,et al.  External noise distinguishes attention mechanisms , 1998, Vision Research.

[50]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[51]  K R Gegenfurtner,et al.  Contrast detection in luminance and chromatic noise. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[52]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[53]  D G Pelli,et al.  Why use noise? , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  A J Ahumada,et al.  Putting the visual system noise back in the picture. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[55]  Susana T. L. Chung,et al.  Limitation of Ideal-Observer Analysis in Understanding Perceptual Learning , 2002 .

[56]  L. N. Ornston,et al.  Mechanisms of adaptation , 1979 .

[57]  Kenneth J. Ciuffreda,et al.  AMBLYOPIA: BASIC AND CLINICAL ASPECTS , 1991 .

[58]  N. Nagaraja,et al.  Effect of Luminance Noise on Contrast Thresholds , 1964 .

[59]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989 .

[60]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[61]  Theodore G. Birdsall,et al.  Definitions of d′ and η as Psychophysical Measures , 1958 .

[62]  R. F. Wagner,et al.  Efficiency of human visual signal discrimination. , 1981, Science.

[63]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[64]  Bosco S. Tjan,et al.  Learning letter identification in peripheral vision , 2005, Vision Research.