Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation
暂无分享,去创建一个
[1] Konstantin Mischaikow,et al. Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..
[2] Yoshitaka Watanabe,et al. A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems , 2009, Numerische Mathematik.
[3] Thomas Wanner,et al. Structure of the Attractor of the Cahn-hilliard equation on a Square , 2007, Int. J. Bifurc. Chaos.
[4] Michael Plum,et al. Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .
[5] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[6] J. G. Heywood,et al. A Numerically Based Existence Theorem for the Navier-Stokes Equations , 1999 .
[7] Multiple Solutions for a Semilinear Boundary Value Problem: A Computational Multiplicity Proof , 2000 .
[8] John E. Hilliard,et al. Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .
[9] John W. Cahn,et al. Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .
[10] Konstantin Mischaikow,et al. Global smooth solution curves using rigorous branch following , 2010, Math. Comput..
[11] Mitsuhiro T. Nakao. NUMERICAL VERIFICATION METHODS FOR SOLUTIONS OF ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS , 2000 .
[12] Konstantin Mischaikow,et al. Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..
[13] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[14] Piotr Zgliczynski,et al. Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..
[15] Nobito Yamamoto,et al. A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .
[16] Yoshitaka Watanabe,et al. A Numerical Method to Verify the Invertibility of Linear Elliptic Operators with Applications to Nonlinear Problems , 2005, Computing.
[17] Jean-Philippe Lessard,et al. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .
[18] H. Keller. Lectures on Numerical Methods in Bifurcation Problems , 1988 .
[19] 中尾 充宏. Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .
[20] Konstantin Mischaikow,et al. Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..
[21] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[22] J. Cahn,et al. A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .
[23] M. Plum. Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems , 1995 .
[24] Jean-Philippe Lessard,et al. Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..
[25] Konstantin Mischaikow,et al. Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .
[26] J. Lessard. Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.