Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation

In this paper, we propose a new general method to compute rigorously global smooth branches of equilibria of higher-dimensional partial differential equations. The theoretical framework is based on a combination of the theory introduced in Global smooth solution curves using rigorous branch following (van den Berg et al., Math. Comput. 79(271):1565–1584, 2010) and in Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs (Gameiro and Lessard, J. Diff. Equ. 249(9):2237–2268, 2010). Using this method, one can obtain proofs of existence of global smooth solution curves of equilibria for large (continuous) parameter ranges and about local uniqueness of the solutions on the curve. As an application, we compute several smooth branches of equilibria for the three-dimensional Cahn–Hilliard equation.

[1]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[2]  Yoshitaka Watanabe,et al.  A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems , 2009, Numerische Mathematik.

[3]  Thomas Wanner,et al.  Structure of the Attractor of the Cahn-hilliard equation on a Square , 2007, Int. J. Bifurc. Chaos.

[4]  Michael Plum,et al.  Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .

[5]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[6]  J. G. Heywood,et al.  A Numerically Based Existence Theorem for the Navier-Stokes Equations , 1999 .

[7]  Multiple Solutions for a Semilinear Boundary Value Problem: A Computational Multiplicity Proof , 2000 .

[8]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[9]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[10]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..

[11]  Mitsuhiro T. Nakao NUMERICAL VERIFICATION METHODS FOR SOLUTIONS OF ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS , 2000 .

[12]  Konstantin Mischaikow,et al.  Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..

[13]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[14]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[15]  Nobito Yamamoto,et al.  A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .

[16]  Yoshitaka Watanabe,et al.  A Numerical Method to Verify the Invertibility of Linear Elliptic Operators with Applications to Nonlinear Problems , 2005, Computing.

[17]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .

[18]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[19]  中尾 充宏 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .

[20]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[21]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[22]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[23]  M. Plum Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems , 1995 .

[24]  Jean-Philippe Lessard,et al.  Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..

[25]  Konstantin Mischaikow,et al.  Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .

[26]  J. Lessard Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.