Investigation of electronic structure of a lithium atom confined by a finite spherical cavity

[1]  A. Sali,et al.  Effect of impurity position and electric field on the optical absorption coefficients and oscillator strength in spherical multilayer quantum dot , 2022, The European Physical Journal Plus.

[2]  A. Özmen,et al.  Excited state energies, orbital energies and virial coefficients in Confined multi-electron systems , 2022, Journal of Luminescence.

[3]  N. Ali,et al.  Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity , 2022, Nanomaterials.

[4]  M. Ghosh,et al.  Pulsed field induced excitation in impurity doped quantum dot: Interplay with Gaussian white noise , 2022, Physica B: Condensed Matter.

[5]  M. Ghosh,et al.  Analyzing group index of impurity doped quantum dots under the superintendence of Gaussian white noise , 2022, The European Physical Journal B.

[6]  S. Saadaoui,et al.  Energy levels and nonlinear optical properties of spheroid-shaped CdTe/ZnTe core/shell quantum dot , 2022, Optics & Laser Technology.

[7]  A. Özmen,et al.  Relativistic effects in confined helium-like atoms , 2021 .

[8]  Guangan Zhang,et al.  Effects of oxygen atoms and oxygen molecules on the electronic properties of modified black phosphorus , 2021 .

[9]  P. Saini,et al.  Spin-orbit interaction effects on binding energy and susceptibility of an off-centre D0 impurity in a Gaussian dot in magnetic field , 2021 .

[10]  V. Prasad,et al.  Dependence of nonlinear optical properties on electrostatic interaction in an excitonic parabolic quantum dot in a static magnetic field , 2021 .

[11]  S. A. Cruz,et al.  Many-electron atom confinement by a penetrable prolate spheroidal cavity , 2021, The European Physical Journal D.

[12]  O. Motapon,et al.  Oscillator strengths, transition probabilities and state lifetimes of on- and off-center donor impurities in quantum dots: off-center displacement, quantum size and potential-shape effects , 2021, The European Physical Journal D.

[13]  J. Garza,et al.  Free-basis-set method to describe the helium atom confined by a spherical box with finite and infinite potentials , 2021, The European Physical Journal D.

[14]  Arpita Roy,et al.  Confined H-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document} ion within a density functional framewor , 2021, The European Physical Journal D.

[15]  A. Mese,et al.  The effects of geometrical shape and impurity position on the self-polarization of a donor impurity in an infinite GaAs/AlAs tetragonal quantum dot , 2020, Indian Journal of Physics.

[16]  S. Sakiroglu,et al.  Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field , 2020 .

[17]  R. Cabrera-Trujillo,et al.  High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement , 2020, Matter and Radiation at Extremes.

[18]  A. Roy,et al.  Shannon Entropy in Confined He-Like Ions within a Density Functional Formalism , 2020, Quantum Reports.

[19]  A. Özmen,et al.  Polarizability and electric field gradient of two-electron quantum dots , 2020 .

[20]  B. Vaseghi,et al.  Magnetic properties in three electrons under Rashba spin‐orbit interaction and magnetic field , 2019, International Journal of Quantum Chemistry.

[21]  M. Ghosh,et al.  Exploring the nonlinear optical properties of impurity doped quantum dots in the light of noise-binding energy interplay , 2019, Results in Physics.

[22]  R. Betancourt-Riera,et al.  New approach to obtain the analytical expression of the energy functional in free or confined atoms , 2019, Results in Physics.

[23]  M. Ameri,et al.  Robust half metallicity state with the hydrostatic and tetragonal distortion for a new quaternary Heusler ZrTiRhGa: FP-LAPW calculations , 2019, Physica B: Condensed Matter.

[24]  A. Özmen,et al.  Dipole and quadrupole polarizabilities and oscillator strengths of spherical quantum dot , 2018, Chemical Physics.

[25]  B. Dutta,et al.  Explicitly correlated variational estimates of the energy levels of negative hydrogen ion under spatial confinement , 2018 .

[26]  E. Buend́ıa,et al.  Confinement effects on the electronic structure of M‐shell atoms: A study with explicitly correlated wave functions , 2017 .

[27]  A. Özmen,et al.  Investigation of magnetic field effects on binding energies in spherical quantum dot with finite confinement potential , 2017 .

[28]  C. Stan,et al.  Magnetic field control of absorption coefficient and group index in an impurity doped quantum disc , 2017 .

[29]  S. Saha,et al.  Exploring Optical Dielectric Function of Impurity Doped Quantum Dots in Presence of Gaussian White Noise , 2017 .

[30]  Ş. E. Okan,et al.  Energy levels of GaAs/Al x Ga 1-x As/AlAs spherical quantum dot with an impurity , 2016 .

[31]  A. Özmen,et al.  Calculation of Zeeman splitting and Zeeman transition energies of spherical quantum dot in uniform magnetic field , 2016 .

[32]  J. Garza,et al.  Solution of the Kohn–Sham equations for many-electron atoms confined by penetrable walls , 2016, Theoretical Chemistry Accounts.

[33]  I. Sokmen,et al.  Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well , 2015 .

[34]  Bekir Çakir,et al.  Linear and nonlinear absorption coefficients of spherical two-electron quantum dot , 2015, Comput. Phys. Commun..

[35]  A. Özmen,et al.  Electronic structure of two-electron quantum dot with parabolic potential , 2015 .

[36]  Gh. Safarpour,et al.  Simultaneous Effects of External Electric Field and Conduction Band Nonparabolicity on Optical Properties of a GaAs Quantum Dot Embedded at the Center of a GaAlAs Nano-Wire , 2014 .

[37]  S. Sakiroglu,et al.  Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field , 2014 .

[38]  H. Montgomery,et al.  Confined helium: Excited singlet and triplet states , 2013 .

[39]  R. Katebi,et al.  Optical and electronic properties of anisotropic parabolic quantum disks in the presence of tilted magnetic fields , 2012 .

[40]  A. Özmen,et al.  Computation of ionization and various excited state energies ofhelium and helium-like quantum dots , 2011 .

[41]  A. Sarsa,et al.  Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries. , 2011, Journal of chemical theory and computation.

[42]  Miao Yin,et al.  The correlation energies and nonlinear optical absorptions of an exciton in a disc-like quantum dot , 2010 .

[43]  N. Aquino,et al.  Spherically compressed helium atom described by perturbative and variational methods , 2010 .

[44]  Y. Yakar Evaluation of Orbital‐ and Ground State Energies of Some Open‐ and Closed‐Shell Atoms over Integer and Noninteger Slater Type Orbitals , 2007 .

[45]  J. Garza,et al.  Confined helium atom low-lying S states analyzed through correlated Hylleraas wave functions and the Kohn-Sham model. , 2006, The Journal of chemical physics.

[46]  E. V. Ludeña SCF Hartree–Fock calculations of ground state wavefunctions of compressed atoms , 1978 .