Interval Analysis of Kinematic Errors in Serial Manipulators Using Product of Exponentials Formula

This paper proposes a methodology for analysis of kinematic errors in robotic manipulators. The approach is based on interval analysis and predicts end-effector pose deviation from its ideal model using the interval bounds on the errors of the individual axes. In contrast to sampling-based Monte Carlo methods, the proposed methodology offers guaranteed bounds for the error that accumulates at the end-effector. The forward kinematics map is extended to intervals using the product of exponentials formulation with interval joint parameters. This is a convenient method that incorporates both analytical and computational techniques and can be used for error analysis, or inversely, for manipulator design. Simulation and experimental results confirm that the calculated interval bounds fully enclose the end-effector error distribution and provide a measure of its volumetric size. An important application of this method is in the design of modular precision manipulators that can be assembled using individual linear and rotary stages.

[1]  Shilong Jiang,et al.  Improved and modified geometric formulation of POE based kinematic calibration of serial robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  A. Slocum,et al.  Precision Machine Design , 1992 .

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  E. B. Magrab,et al.  A General Procedure to Evaluate Robot Positioning Errors , 1987 .

[5]  S. Khodaygan,et al.  Tolerance analysis of mechanical assemblies based on modal interval and small degrees of freedom (MI-SDOF) concepts , 2010 .

[6]  J. Suykens,et al.  An absolute stability criterion for the Lur'e problem with sector and slope restricted nonlinearities , 1998 .

[7]  Eric Walter,et al.  Guaranteed solution of direct kinematic problems for general configurations of parallel manipulators , 1998, IEEE Trans. Robotics Autom..

[8]  P. Lin,et al.  Direct volumetric error evaluation for multi-axis machines , 1993 .

[9]  J. Merlet,et al.  Multi-criteria optimal design of parallel manipulators based on interval analysis , 2005 .

[10]  Adha Imam Cahyadi,et al.  Robotic Micro-Assembly , 2012 .

[11]  Weidong Wu,et al.  Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis , 2007, Reliab. Eng. Syst. Saf..

[12]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[13]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[16]  W. Cleghorn,et al.  Microassembly of 3-D microstructures using a compliant, passive microgripper , 2004, Journal of Microelectromechanical Systems.

[17]  Dan O. Popa,et al.  ${\rm M}^{3}$-Deterministic, Multiscale, Multirobot Platform for Microsystems Packaging: Design and Quasi-Static Precision Evaluation , 2009, IEEE Transactions on Automation Science and Engineering.

[18]  Ping Zhang,et al.  μ3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of On-Wafer Microrobots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Harry E. Stephanou,et al.  A Multiscale Assembly and Packaging System for Manufacturing of Complex Micro-Nano Devices , 2012, IEEE Transactions on Automation Science and Engineering.

[20]  Weidong Wu Modeling, analysis, and optimization of mechanical tolerances in design and manufacturing using fuzzy and interval methods , 2004 .

[21]  Beno Benhabib,et al.  Computer-aided joint error analysis of robots , 1987, IEEE J. Robotics Autom..

[22]  Dan O. Popa,et al.  Interval analysis for robot precision evaluation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[23]  Shuzi Yang,et al.  Kinematic-Parameter Identification for Serial-Robot Calibration Based on POE Formula , 2010, IEEE Transactions on Robotics.

[24]  Abdessamad Kobi,et al.  A NEW RESPONSE SURFACE METHOD FOR MANUFACTURING PROCESS OPTIMIZATION USING INTERVAL COMPUTATION , 2005 .

[25]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[26]  J. Merlet,et al.  Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis , 2002 .

[27]  Y. C. Shin,et al.  A statistical analysis of positional errors of a multiaxis machine tool , 1992 .

[28]  Ekaterina Auer,et al.  SmartMOBILE and its Applications to Guaranteed Modeling and Simulation of Mechanical Systems , 2009 .

[29]  Dan O. Popa,et al.  Precision evaluation of modular multiscale robots for peg-in-hole microassembly tasks , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[31]  Christoph Hürzeler,et al.  A Microassembly System for the Flexible Assembly of Hybrid Robotic Mems Devices , 2009 .

[32]  J. Merlet,et al.  Five Precision Point Synthesis of Spatial RRR Manipulators Using Interval Analysis , 2004 .

[33]  J. A. Soons,et al.  Modeling the errors of multi-axis machines : a general methodology , 1992 .

[34]  Andrés Kecskeméthy,et al.  Interval Algorithms in Modeling of Multibody Systems , 2003, Numerical Software with Result Verification.

[35]  Jean-Pierre Merlet,et al.  Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis , 2004, Int. J. Robotics Res..

[36]  Zvi S. Roth,et al.  Fundamentals of Manipulator Calibration , 1991 .

[37]  Frank Chongwoo Park,et al.  Kinematic calibration using the product of exponentials formula , 1996, Robotica.

[38]  Sergej Fatikow,et al.  Electrothermal microgrippers for pick-and-place operations , 2008 .

[39]  Pierre Lambert,et al.  Capillary Forces in Microassembly , 2007 .

[40]  William K. Veitschegger,et al.  Robot accuracy analysis based on kinematics , 1986, IEEE J. Robotics Autom..