Cathode R&D for future light sources

This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

[1]  M. Babzien,et al.  MG CATHODE AND ITS THERMAL EMITTANCE , 2002 .

[2]  R. Pease,et al.  Narrow Cone Emission from Negative Electron Affinity Photocathodes , 2005 .

[3]  T. König,et al.  Work function measurements of thin oxide films on metals-MgO on Ag(001) , 2009 .

[4]  A. Isakovic,et al.  Diamond Amplified Photocathodes , 2007 .

[5]  J. Maldonado,et al.  Robust CsBr/Cu Photocathodes for the Linac Coherent Light Source , 2008 .

[6]  S. E. Irvine,et al.  Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. , 2004, Physical review letters.

[7]  P Emma,et al.  Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source. , 2009, Physical review letters.

[8]  E. Cooper,et al.  E. J. Will , 1985 .

[9]  P. Quémerais,et al.  Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. , 2007, Physical review letters.

[10]  F. Sabary,et al.  Silver‐covered diffraction gratings as possible high‐efficiency laser driven photoemitters , 1991 .

[11]  S. D. Conte,et al.  Surface and bulk contribution to Cu(111) quantum efficiency , 2008 .

[12]  F. Wise,et al.  Efficient temporal shaping of electron distributions for high-brightness photoemission electron guns , 2008 .

[13]  K. D. Friddell,et al.  First operation of a photocathode radio frequency gun injector at high duty factor , 1993 .

[14]  P. Dombi,et al.  Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. , 2008, Optics express.

[15]  I. Bazarov,et al.  Maximum achievable beam brightness from photoinjectors. , 2009, Physical review letters.

[16]  W. Spicer,et al.  Photoemission Studies of the Noble Metals. I. Copper , 1969 .

[17]  P. Emma,et al.  LCLS injector drive laser , 2007, 2007 IEEE Particle Accelerator Conference (PAC).

[18]  W. Price,et al.  Photoelectron Spectroscopy , 2009 .

[19]  W. E. Spicer,et al.  Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds , 1958 .

[20]  Roger Fabian W. Pease,et al.  Negative electron affinity photocathodes as high-performance electron sources-Part 2: Energy spectrum measurements , 1995, Optics & Photonics.

[21]  Tsang,et al.  Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. , 1991, Physical review. B, Condensed matter.

[22]  D. Sertore,et al.  CESIUM TELLURIDE AND METALS PHOTOELECTRON THERMAL EMITTANCE MEASUREMENTS USING A TIME-OF-FLIGHT SPECTROMETER , 2004 .

[23]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[24]  IEEE Transactions on Nuclear Science , 2023, IEEE Transactions on Nuclear Science.

[25]  William E. Spicer,et al.  Escape probability for negative electron affinity photocathodes: calculations compared to experiments , 1995, Optics & Photonics.

[26]  A. S. Jaroshevich,et al.  Refraction of thermalized electrons emitted ballistically into vacuum from p+-GaAs-(Cs,O) , 2003 .

[27]  M. Kuriki,et al.  Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes , 2007 .

[28]  A. Dabiran,et al.  Thermal emittance and response time measurements of a GaN photocathode , 2009 .

[29]  Kurt Aulenbacher,et al.  Pulse response of thin III/V semiconductor photocathodes , 2002 .

[30]  K. Jensen,et al.  Theory of photoemission from cesium antimonide using an alpha-semiconductor model , 2008 .

[31]  John Schmerge,et al.  The Quantum Efficiency and Thermal Emittance of Metal Photocathodes , 2009 .

[32]  Milos Nesladek,et al.  Diamond Electronics - Fundamentals to Applications II , 2008 .

[33]  Andrew G. Glen,et al.  APPL , 2001 .

[34]  Mikhail Krasilnikov,et al.  MEASUREMENTS OF THERMAL EMITTANCE FOR CESIUM TELLURIDE PHOTOCATHODES AT PITZ , 2005 .

[35]  D. Bullard,et al.  A High Average Current DC GAAS Photocathode Gun for ERLS and FELS , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[36]  C. Ghosh,et al.  Photoemissive Materials , 1982, Other Conferences.

[37]  K. Jensen,et al.  Photoemission from metals and cesiated surfaces , 2007 .

[38]  T. Risse,et al.  Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. , 2007, Physical review letters.

[39]  Henrik Loos,et al.  Commissioning the LCLS Injector , 2008 .

[40]  P. Lucas,et al.  PROCEEDINGS 2001 PARTICLE ACCELERATOR CONFERENCE , 2001 .

[41]  C.K. Sinclair,et al.  Use of Multiobjective Evolutionary Algorithms in High Brightness Electron Source Design , 2005, Proceedings of the 2005 Particle Accelerator Conference.

[42]  S. Kevan Observation of a new surface state on Cu(001) , 1983 .

[43]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[44]  D. Dowell,et al.  In-Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam , 2005 .

[45]  T. Miyajima,et al.  Thermal emittance measurements from negative electron affinity photocathodes , 2007, 2007 IEEE Particle Accelerator Conference (PAC).

[46]  D. Dowell,et al.  EMITTANCE AND QUANTUM EFFICIENCY MEASUREMENTS FROM A 1.6 CELL S-BAND PHOTOCATHODE RF GUN WITH MG CATHODE , 2004 .

[47]  E. Pedersoli,et al.  Evidence of vectorial photoelectric effect on Copper , 2005, 1201.3046.

[48]  Ivan Bazarov,et al.  Thermal emittance and response time measurements of negative electron affinity photocathodes , 2008 .

[49]  K. Held,et al.  Calculation of photoemission spectra of the doped Mott insulator using LDA+DMFT(QMC) , 2000, cond-mat/0005207.

[50]  L. Giordano,et al.  Tuning the work function of ultrathin oxide films on metals by adsorption of alkali atoms. , 2008, The Journal of chemical physics.

[51]  Thomas Anderson Callcott,et al.  Volume and surface photoemission processes from plasmon resonance fields , 1975 .

[52]  J. Wu,et al.  Commissioning the Linac Coherent Light Source injector , 2008 .

[53]  L. DiMauro,et al.  Measurement of thermal emittance for a copper photocathode , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[54]  P. Feibelman Self-Consistent Calculation of the Surface Photoelectric Effect , 1975 .

[55]  Katta G. Murty,et al.  On KΔ , 1986, Discret. Appl. Math..

[56]  J. Endriz Surface waves and grating‐tuned photocathodes , 1974 .

[57]  K. Aulenbacher,et al.  A diffusion model for picosecond electron bunches from negative electron affinity GaAs photocathodes , 1999 .

[58]  Systematic study of polarized electron emission from strained GaAs/GaAsP superlattice photocathodes , 2004, physics/0412099.

[59]  William E. Spicer,et al.  Modern theory and applications of photocathodes , 1993, Optics & Photonics.

[60]  D. Dowell,et al.  In situ cleaning of metal cathodes using a hydrogen ion beam , 2006 .

[61]  K. Attenkofer,et al.  High-brightness photocathodes through ultrathin surface layers on metals. , 2010, Physical review letters.

[62]  K. Kusakabe,et al.  A Determination Method of the Work function using the Slab Model with a First-Principles Electronic Structure Calculation , 2008 .