Cathode R&D for future light sources
暂无分享,去创建一个
Howard A. Padmore | C. Hernandez-Garcia | Triveni Rao | Weishi Wan | Ivan Bazarov | John Smedley | R. Legg | D. Dowell | Katherine Harkay | H. Padmore | D. Dowell | C. Hernández-García | T. Rao | J. Smedley | K. Harkay | I. Bazarov | R. Legg | B. Dunham | Bruce M. Dunham | W. Wan
[1] M. Babzien,et al. MG CATHODE AND ITS THERMAL EMITTANCE , 2002 .
[2] R. Pease,et al. Narrow Cone Emission from Negative Electron Affinity Photocathodes , 2005 .
[3] T. König,et al. Work function measurements of thin oxide films on metals-MgO on Ag(001) , 2009 .
[4] A. Isakovic,et al. Diamond Amplified Photocathodes , 2007 .
[5] J. Maldonado,et al. Robust CsBr/Cu Photocathodes for the Linac Coherent Light Source , 2008 .
[6] S. E. Irvine,et al. Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. , 2004, Physical review letters.
[7] P Emma,et al. Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source. , 2009, Physical review letters.
[8] E. Cooper,et al. E. J. Will , 1985 .
[9] P. Quémerais,et al. Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. , 2007, Physical review letters.
[10] F. Sabary,et al. Silver‐covered diffraction gratings as possible high‐efficiency laser driven photoemitters , 1991 .
[11] S. D. Conte,et al. Surface and bulk contribution to Cu(111) quantum efficiency , 2008 .
[12] F. Wise,et al. Efficient temporal shaping of electron distributions for high-brightness photoemission electron guns , 2008 .
[13] K. D. Friddell,et al. First operation of a photocathode radio frequency gun injector at high duty factor , 1993 .
[14] P. Dombi,et al. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. , 2008, Optics express.
[15] I. Bazarov,et al. Maximum achievable beam brightness from photoinjectors. , 2009, Physical review letters.
[16] W. Spicer,et al. Photoemission Studies of the Noble Metals. I. Copper , 1969 .
[17] P. Emma,et al. LCLS injector drive laser , 2007, 2007 IEEE Particle Accelerator Conference (PAC).
[18] W. Price,et al. Photoelectron Spectroscopy , 2009 .
[19] W. E. Spicer,et al. Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds , 1958 .
[20] Roger Fabian W. Pease,et al. Negative electron affinity photocathodes as high-performance electron sources-Part 2: Energy spectrum measurements , 1995, Optics & Photonics.
[21] Tsang,et al. Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. , 1991, Physical review. B, Condensed matter.
[22] D. Sertore,et al. CESIUM TELLURIDE AND METALS PHOTOELECTRON THERMAL EMITTANCE MEASUREMENTS USING A TIME-OF-FLIGHT SPECTROMETER , 2004 .
[23] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[24] IEEE Transactions on Nuclear Science , 2023, IEEE Transactions on Nuclear Science.
[25] William E. Spicer,et al. Escape probability for negative electron affinity photocathodes: calculations compared to experiments , 1995, Optics & Photonics.
[26] A. S. Jaroshevich,et al. Refraction of thermalized electrons emitted ballistically into vacuum from p+-GaAs-(Cs,O) , 2003 .
[27] M. Kuriki,et al. Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes , 2007 .
[28] A. Dabiran,et al. Thermal emittance and response time measurements of a GaN photocathode , 2009 .
[29] Kurt Aulenbacher,et al. Pulse response of thin III/V semiconductor photocathodes , 2002 .
[30] K. Jensen,et al. Theory of photoemission from cesium antimonide using an alpha-semiconductor model , 2008 .
[31] John Schmerge,et al. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes , 2009 .
[32] Milos Nesladek,et al. Diamond Electronics - Fundamentals to Applications II , 2008 .
[33] Andrew G. Glen,et al. APPL , 2001 .
[34] Mikhail Krasilnikov,et al. MEASUREMENTS OF THERMAL EMITTANCE FOR CESIUM TELLURIDE PHOTOCATHODES AT PITZ , 2005 .
[35] D. Bullard,et al. A High Average Current DC GAAS Photocathode Gun for ERLS and FELS , 2005, Proceedings of the 2005 Particle Accelerator Conference.
[36] C. Ghosh,et al. Photoemissive Materials , 1982, Other Conferences.
[37] K. Jensen,et al. Photoemission from metals and cesiated surfaces , 2007 .
[38] T. Risse,et al. Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. , 2007, Physical review letters.
[39] Henrik Loos,et al. Commissioning the LCLS Injector , 2008 .
[40] P. Lucas,et al. PROCEEDINGS 2001 PARTICLE ACCELERATOR CONFERENCE , 2001 .
[41] C.K. Sinclair,et al. Use of Multiobjective Evolutionary Algorithms in High Brightness Electron Source Design , 2005, Proceedings of the 2005 Particle Accelerator Conference.
[42] S. Kevan. Observation of a new surface state on Cu(001) , 1983 .
[43] W. Stickle,et al. Handbook of X-Ray Photoelectron Spectroscopy , 1992 .
[44] D. Dowell,et al. In-Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam , 2005 .
[45] T. Miyajima,et al. Thermal emittance measurements from negative electron affinity photocathodes , 2007, 2007 IEEE Particle Accelerator Conference (PAC).
[46] D. Dowell,et al. EMITTANCE AND QUANTUM EFFICIENCY MEASUREMENTS FROM A 1.6 CELL S-BAND PHOTOCATHODE RF GUN WITH MG CATHODE , 2004 .
[47] E. Pedersoli,et al. Evidence of vectorial photoelectric effect on Copper , 2005, 1201.3046.
[48] Ivan Bazarov,et al. Thermal emittance and response time measurements of negative electron affinity photocathodes , 2008 .
[49] K. Held,et al. Calculation of photoemission spectra of the doped Mott insulator using LDA+DMFT(QMC) , 2000, cond-mat/0005207.
[50] L. Giordano,et al. Tuning the work function of ultrathin oxide films on metals by adsorption of alkali atoms. , 2008, The Journal of chemical physics.
[51] Thomas Anderson Callcott,et al. Volume and surface photoemission processes from plasmon resonance fields , 1975 .
[52] J. Wu,et al. Commissioning the Linac Coherent Light Source injector , 2008 .
[53] L. DiMauro,et al. Measurement of thermal emittance for a copper photocathode , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).
[54] P. Feibelman. Self-Consistent Calculation of the Surface Photoelectric Effect , 1975 .
[55] Katta G. Murty,et al. On KΔ , 1986, Discret. Appl. Math..
[56] J. Endriz. Surface waves and grating‐tuned photocathodes , 1974 .
[57] K. Aulenbacher,et al. A diffusion model for picosecond electron bunches from negative electron affinity GaAs photocathodes , 1999 .
[58] Systematic study of polarized electron emission from strained GaAs/GaAsP superlattice photocathodes , 2004, physics/0412099.
[59] William E. Spicer,et al. Modern theory and applications of photocathodes , 1993, Optics & Photonics.
[60] D. Dowell,et al. In situ cleaning of metal cathodes using a hydrogen ion beam , 2006 .
[61] K. Attenkofer,et al. High-brightness photocathodes through ultrathin surface layers on metals. , 2010, Physical review letters.
[62] K. Kusakabe,et al. A Determination Method of the Work function using the Slab Model with a First-Principles Electronic Structure Calculation , 2008 .