Experimental evaluation of 3D electrical impedance tomography with total variation prior

In electrical impedance tomography (EIT), two- or three-dimensional (2D or 3D) distribution of the electrical conductivity is reconstructed based on potential measurements from the surface of the object. In many industrial and medical applications of EIT, the conductivity distribution is discontinuous – due to, e.g. phase or tissue boundaries. Previous studies have shown that such features in the conductivity can be preserved by using total variation (TV) prior model in the EIT image reconstruction. Recently, both 2D and 3D TV models have been utilized in EIT simulation studies. This far, however, EIT reconstructions with TV models have been evaluated experimentally only in 2D cases or translationally invariant 3D cases. In this paper, an experimental study of EIT with a TV prior in a 3D geometry is presented. In addition, we propose the selection of the prior parameters in the TV model based on the prior information of materials in the target, and their conductivity ranges. The results demonstrate the robustness of the proposed parameter selection strategy, and verify that the use of the TV prior yields sharp reconstructions in 3D EIT.

[1]  E. Sidky,et al.  Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization , 2008, Physics in medicine and biology.

[2]  Zhaoyan Fan,et al.  An adaptive total variation regularization method for electrical capacitance tomography , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[3]  V. Kolehmainen,et al.  Sparsity-promoting Bayesian inversion , 2012 .

[4]  A Tizzard,et al.  Development of a neonate lung reconstruction algorithm using a wavelet AMG and estimated boundary form , 2008, Physiological measurement.

[5]  M. Schweiger,et al.  Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information , 2006 .

[6]  Marko Vauhkonen,et al.  Suitability of a PXI platform for an electrical impedance tomography system , 2008 .

[7]  Andy Adler,et al.  An experimental clinical evaluation of EIT imaging with ℓ1 data and image norms , 2013, Physiological measurement.

[8]  K. Perez,et al.  Performance of Missing Transverse Momentum Reconstruction in Proton-Proton , 2011, 1108.5602.

[9]  M. Burger,et al.  Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators , 2014, 1402.5297.

[10]  Andy Adler,et al.  A primal–dual interior-point framework for using the L1 or L2 norm on the data and regularization terms of inverse problems , 2012 .

[11]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[12]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[13]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[14]  Jari P. Kaipio,et al.  Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory , 2002 .

[15]  Richard A Williams,et al.  Process Tomography: Principles, Techniques and Applications , 1995 .

[16]  K D Paulsen,et al.  Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization. , 1996, Applied optics.

[17]  Steve B. Jiang,et al.  Low-dose CT reconstruction via edge-preserving total variation regularization. , 2010, Physics in medicine and biology.

[18]  William Rundell,et al.  Inverse Problems in Medical Imaging and Nondestructive Testing , 1997, Springer Vienna.

[19]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[20]  J. Kaipio,et al.  Electrical Resistance Tomography Imaging of Concrete , 2010 .

[21]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[22]  J. Kaipio,et al.  The Bayesian approximation error approach for electrical impedance tomography—experimental results , 2007 .

[23]  Daniela Calvetti,et al.  A Gaussian hypermodel to recover blocky objects , 2007 .

[24]  J. T. Childers,et al.  Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data , 2011, 1110.3174.

[25]  KEIJO HÄMÄLÄINEN,et al.  Sparse Tomography , 2013, SIAM J. Sci. Comput..

[26]  Rob B. Polder,et al.  Test methods for on site measurement of resistivity of concrete — a RILEM TC-154 technical recommendation , 2001 .

[27]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  J.P. Kaipio,et al.  Three-dimensional electrical impedance tomography based on the complete electrode model , 1999, IEEE Transactions on Biomedical Engineering.

[30]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[31]  Steve B. Jiang,et al.  Low-dose CT reconstruction via edge-preserving total variation regularization , 2010, Physics in medicine and biology.

[32]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[33]  A. Finn,et al.  Image reconstruction for electrical capacitance tomography exploiting sparsity , 2012, 2012 Future of Instrumentation International Workshop (FIIW) Proceedings.

[34]  J. T. Childers,et al.  Performance of Missing Transverse Momentum Reconstruction in Proton-Proton , 2012 .

[35]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[36]  Manuchehr Soleimani,et al.  Nonlinear image reconstruction for electrical capacitance tomography using experimental data , 2005 .

[37]  Jari P. Kaipio,et al.  Electrical Resistance Tomography for Assessment of Cracks in Concrete , 2010 .

[38]  Marko Vauhkonen,et al.  Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments , 2002 .

[39]  J. Kaipio,et al.  Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography , 2009 .

[40]  Weifu Fang,et al.  A nonlinear image reconstruction algorithm for electrical capacitance tomography , 2004 .

[41]  Nuutti Hyvönen,et al.  Edge-Enhancing Reconstruction Algorithm for Three-Dimensional Electrical Impedance Tomography , 2014, SIAM J. Sci. Comput..