Finite element modelling of 1D steel components in reinforced and prestressed concrete structures

This paper introduces a new approach for FE modelling of 1D steel inclusions within a 3D concrete domain. Reinforcements modelled with 1D meshes, when included in 3D domains, are indeed responsible for pathological effects like stress concentration at the local scale. The alternative solution of an explicit 3D mesh of the steel elements requires a large amount of work, and a relatively fine conform mesh (and therefore, additional computation cost). It is thus hardly applicable to large-scale structures. The approach proposed in this contribution, called “1D-3D”, generates an equivalent volume from a 1D mesh of the reinforcements. Associated stresses and stiffnesses, which can be condensed on the boundaries of the newly created volume, are then applied to concrete 3D elements using kinematic relations. This approach is validated on two representative cases of civil engineering applications, including active and passive steel reinforcements. It provides results similar to an explicit 3D approach, without its meshing complexity. It thus combines the advantages of 1D and 3D approaches in a single modelling.

[1]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[2]  Ludovic Jason,et al.  Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures , 2014 .

[3]  LuıS A. M. Mendes,et al.  A new RC bond model suitable for three-dimensional cyclic analyses , 2013 .

[4]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[5]  E. Lorentz,et al.  Ill-posed boundary conditions encountered in 3D and plate finite element simulations , 2005 .

[6]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[7]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[8]  Ludovic Jason,et al.  A new bond slip model for reinforced concrete structures: Validation by modelling a reinforced concrete tie , 2015 .

[9]  Prabhakara Bhatt Prestressed Concrete Design to Eurocodes , 2011 .

[10]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[11]  Frédéric Dufour,et al.  Adaptive zooming method for the analysis of large structures with localized nonlinearities , 2015 .

[12]  Martin David,et al.  Approche multi-échelle du comportement mécanique des structures en béton armé - Application aux enceintes de confinement des centrales nucléaires , 2012 .

[13]  I. Elishakoff,et al.  NEW RESULTS IN FINITE ELEMENT METHOD FOR STOCHASTIC STRUCTURES , 1998 .

[14]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[15]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[18]  Ludovic Jason,et al.  Bond slip model for the simulation of reinforced concrete structures , 2012 .

[19]  Luís A.G. Bitencourt,et al.  A coupling technique for non-matching finite element meshes , 2015 .

[20]  R. Taylor,et al.  A mixed formulation for the finite element solution of contact problems , 1992 .

[21]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[22]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[23]  Ignacio Carol,et al.  Discussions over MECA project results , 2003 .

[24]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[25]  F. Ragueneau,et al.  Modelling of three-dimensional crack patterns in deep reinforced concrete structures , 2015 .

[26]  R. F. Póvoas,et al.  Modelling of prestress in non-linear analysis of concrete structures , 1994 .

[27]  J. Owen,et al.  Modelling the prestress transfer in pre-tensioned concrete elements , 2015 .

[28]  Libor Jendele,et al.  On the solution of multi-point constraints - Application to FE analysis of reinforced concrete structures , 2009 .

[29]  Isamu Yoshitake,et al.  Strengthening system using post-tension tendon with an internal anchorage of concrete members , 2016 .

[30]  Hsuan-Teh Hu,et al.  Constitutive modeling of reinforced concrete and prestressed concrete structures strengthened by fiber-reinforced plastics , 2010 .

[31]  John Foss,et al.  Springer Handbook of Experimental Fluid Mechanics , 2007 .

[32]  Gilles Pijaudier-Cabot,et al.  CONTINUUM DAMAGE THEORY - APPLICATION TO CONCRETE , 1989 .

[33]  J. Pamin,et al.  FEM simulations of cracking in RC beams due to corrosion progress , 2015 .

[34]  K. D. Hjelmstad,et al.  An enriched discontinuous Galerkin formulation for the coupling of non-conforming meshes , 2010 .

[35]  Lutz Gerlach,et al.  PACE-1450 - An Experimental Test Setup for the Investigation of the Crack Behaviour of Prestressed Concrete Containment Walls , 2008 .

[36]  T. S. Phan,et al.  Numerical modeling of the rebar/concrete interface: case of the flat steel rebars , 2013 .

[37]  Piotr Dybeł,et al.  The effect of ribbed reinforcing bars location on their bond with high-performance concrete , 2015 .

[38]  M. Ainsworth Essential boundary conditions and multi-point constraints in finite element analysis , 2001 .

[39]  Hyun Gyu Kim Interface element method (IEM) for a partitioned system with non-matching interfaces , 2002 .

[40]  Hsuan-Teh Hu,et al.  Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure , 2006 .

[41]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[42]  Chul-Hun Chung,et al.  Axisymmetric modeling of prestressing tendons in nuclear containment dome , 2005 .

[43]  F. Dufour,et al.  Stress-based nonlocal damage model , 2011 .

[44]  Benjamin Richard,et al.  A three-dimensional steel/concrete interface model including corrosion effects , 2010 .

[45]  Wam Marcel Brekelmans,et al.  Comparison of nonlocal approaches in continuum damage mechanics , 1995 .

[46]  Alexis Courtois,et al.  Truss vs solid modeling of tendons in prestressed concrete structures: Consequences on mechanical capacity of a Representative Structural Volume , 2010 .