Influence of selectivity and sensitivity parameters on detection limits in multivariate curve resolution of chromatographic second-order data

We have established a procedure for calculating limits of detection for second-order data. One of the steps involves curve resolution by iterative target transformation factor analysis (ITTFA) and we have checked some experimental factors that affect the efficiency of resolution by ITTFA. Therefore, they directly affect the estimation of the limits of detection (LOD). In this paper, we describe the quality of the LOD estimator as a function of the performance characteristics of a determination with high performance liquid chromatography (HPLC)-diode array detection (DAD) (sensitivity and selectivity of spectra and chromatograms) and advise the end user about how he can improve it by modifying these experimental variables.

[1]  Gerrit Kateman,et al.  Evaluation of curve resolution and iterative target transformation factor analysis in quantitative analysis by liquid chromatography , 1987 .

[2]  Avraham Lorber,et al.  Net analyte signal calculation in multivariate calibration , 1997 .

[3]  L. A. Currie,et al.  LIMITS FOR QUALITATIVE DETECTION AND QUANTITATIVE DETERMINATION. APPLICATION TO RADIOCHEMISTRY. , 1968 .

[4]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[5]  K. Danzer,et al.  Selectivity in analytical chemistry (IUPAC Recommendations 2001) , 2001 .

[6]  R. Tauler,et al.  Estimation of figures of merit using univariate statistics for quantitative second-order multivariate curve resolution , 2001 .

[7]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[8]  Gerrit Kateman,et al.  Reliability of iterative target transformation factor analysis when using multiwavelength detection for peak tracking in liquid chromatographic separations , 1988 .

[9]  W. Wegscheider,et al.  Limits of detection in multivariate calibration , 1991 .

[10]  C. Andrew. Clayton,et al.  Detection limits with specified assurance probabilities , 1987 .

[11]  B. Kowalski,et al.  Selectivity, local rank, three‐way data analysis and ambiguity in multivariate curve resolution , 1995 .

[12]  P. Gemperline,et al.  Multivariate background correction for hyphenated chromatography detectors , 1999 .

[13]  F. Xavier Rius,et al.  Detection limits in classical multivariate calibration models , 2000 .

[14]  Bruce R. Kowalski,et al.  Tensorial calibration: II. Second‐order calibration , 1988 .

[15]  F. X. Rius,et al.  MULTIVARIATE DETECTION LIMITS ESTIMATORS , 1996 .

[16]  N. M. Faber,et al.  Second-order bilinear calibration : the effects of vectorising the data matrices of the calibration set , 2002 .

[17]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[18]  Paul J. Gemperline,et al.  Conditions for detecting overlapped peaks with principal component analysis in hyphenated chromatographic methods , 1989 .

[19]  Daniel J. Alpert,et al.  Fantasia - A program for target transformation factor analysis to apportion sources in environmental samples , 1983, Comput. Chem..

[20]  Paul J. Gemperline,et al.  A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis , 1984, J. Chem. Inf. Comput. Sci..

[21]  F. Xavier Rius,et al.  Limit of detection estimator for second-order bilinear calibration , 2002 .

[22]  Andre. Hubaux,et al.  Decision and detection limits for calibration curves , 1970 .

[23]  G. Kateman,et al.  Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis , 1985 .

[24]  Paul J. Gemperline,et al.  Target transformation factor analysis with linear inequality constraints applied to spectroscopic-chromatographic data , 1986 .

[25]  E. Davidson,et al.  Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer , 1978 .