Optimal manipulator parameter tolerance selection using evolutionary optimization technique

Robot system designers often face the challenge of selecting optimal parameter tolerances of a manipulator, which delivers optimal performance. This paper presents an approach to simulate the performance of manipulator and evolutionary optimization method to select optimal parameter tolerance. To determine optimal parameter tolerance, genetic algorithm, and differential evolution, optimization techniques have been used. The objective function maximizes SN Ratio, while manipulator performs a task. As differential evolution and GA are best suited for solving deterministic optimization problems, to handle performance of manipulator, a hybrid technique is proposed. The evolutionary optimization techniques are coupled with orthogonal array used in the Taguchi method to get optimal solution. The hybrid technique is illustrated by an example and concluded that it is best suited for manipulator parameter tolerance design. It is also observed that differential evolution technique converges quickly and require significantly less number of functional evaluations.

[1]  Feng-Sheng Wang,et al.  Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process , 1999 .

[2]  S. K. Ider,et al.  Optimum design of high-speed flexible robotic arms with dynamic behavior constraints , 1997 .

[3]  M. D. Bennett,et al.  Robotics and Control , 1990 .

[4]  Dan Zhang,et al.  Optimum design of parallel kinematic toolheads with genetic algorithms , 2004, Robotica.

[5]  Moo Ho Lee,et al.  Dynamic Optimization of a Continuous Polymer Reactor Using a Modified Differential Evolution Algorithm , 1999 .

[6]  Christiaan J. J. Paredis,et al.  Agent-based design of fault tolerant manipulators for satellite docking , 1997, Proceedings of International Conference on Robotics and Automation.

[7]  Panos S. Shiakolas,et al.  Optimum Robot Design Based on Task Specifications Using Evolutionary Techniques and Kinematic, Dynamic, and Structural Constraints , 2002 .

[8]  Guilin Yang,et al.  Task-based optimization of modular robot configurations: minimized degree-of-freedom approach , 2000 .

[9]  Jie Wu,et al.  Optimal planning of robot calibration experiments by genetic algorithms , 1997 .

[10]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[11]  S. S. Rao,et al.  Probabilistic approach to manipulator kinematics and dynamics , 2001, Reliab. Eng. Syst. Saf..

[12]  P. R. Bélanger,et al.  An LQ-Based Task-Space Performance Measure for Robots , 1998, Int. J. Robotics Res..

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  Patrick Chedmail,et al.  Robot mechanism synthesis and genetic algorithms , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[15]  C. J. Stone,et al.  Introduction to Stochastic Processes , 1972 .

[16]  Suat Tanaydin Robust Design and Analysis for Quality Engineering , 1996 .

[17]  Sunil K. Agrawal,et al.  Designing robots for optimal performance during repetitive motion , 1998, IEEE Trans. Robotics Autom..

[18]  Hanqi Zhuang,et al.  Optimal selection of measurement configurations for robot calibration using simulated annealing , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Tapan P. Bagchi,et al.  Multiobjective Robust Design by Genetic Algorithms , 2003 .

[20]  Souran Manoochehri,et al.  A Computer-Based Methodology for the Form Synthesis and Optimal Design of Robot Manipulators , 1990 .

[21]  Alan D. Christiansen,et al.  Using a new GA-based multiobjective optimization technique for the design of robot arms , 1998, Robotica.

[22]  Zvi Shiller,et al.  Design of Multi-Degree-of-Freedom Mechanisms for Optimal Dynamic Performance , 1993 .

[23]  Christiaan J. J. Paredis,et al.  Kinematic Design of Serial Link Manipulators From Task Specifications , 1993, Int. J. Robotics Res..

[24]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[25]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.