Use and categorization of Light Detection and Ranging vegetation metrics in avian diversity and species distribution research

Vegetation structure is a key determinant of animal diversity and species distributions. The introduction of Light Detection and Ranging (LiDAR) has enabled the collection of massive amounts of point cloud data for quantifying habitat structure at fine resolution. Here, we review the current use of LiDAR‐derived vegetation metrics in diversity and distribution research of birds, a key group for understanding animal–habitat relationships.

[1]  Anne Bowser,et al.  Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale , 2018, Biological reviews of the Cambridge Philosophical Society.

[2]  Thomas Schneider,et al.  Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria - Germany , 2017, Remote. Sens..

[3]  Matthew J. Miller,et al.  HBW and BirdLife International Illustrated Checklist of the Birds of the World Volume 2: Passerines Josep del Hoyo, Nigel J. Collar. 2016. Lynx Edicions, Barcelona, 1013 pages, hundreds of color plates. ISBN 9788496553989. $269 (Hardcover). , 2017 .

[4]  Carsten F. Dormann,et al.  An efficient method to exploit LiDAR data in animal ecology , 2017 .

[5]  N. Zimmermann,et al.  Habitat Suitability and Distribution Models: With Applications in R , 2017 .

[6]  Gregory P Asner,et al.  Canopy structure drives orangutan habitat selection in disturbed Bornean forests , 2017, Proceedings of the National Academy of Sciences.

[7]  A. C. Seijmonsbergen,et al.  eEcoLiDAR, eScience infrastructure for ecological applications of LiDAR point clouds: reconstructing the 3D ecosystem structure for animals at regional to continental scales , 2017 .

[8]  E. N. Stavros,et al.  ISS observations offer insights into plant function , 2017, Nature Ecology &Evolution.

[9]  Tobias Roth,et al.  Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure , 2017 .

[10]  Ralf Seppelt,et al.  Will your paper be used in a meta‐analysis? Make the reach of your research broader and longer lasting , 2017 .

[11]  T. Tokola,et al.  Remote sensing‐based landscape indicators for the evaluation of threatened‐bird habitats in a tropical forest , 2017, Ecology and evolution.

[12]  Michela Bertolotto,et al.  Airborne laser scanning data storage and indexing: state-of-the-art review , 2016 .

[13]  Anna F. Cord,et al.  Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives , 2016 .

[14]  Joseph D. Holbrook,et al.  Airborne laser scanning and spectral remote sensing give a bird's eye perspective on arctic tundra breeding habitat at multiple spatial scales , 2016 .

[15]  Kristina Koenig,et al.  Full-Waveform Airborne Laser Scanning in Vegetation Studies—A Review of Point Cloud and Waveform Features for Tree Species Classification , 2016 .

[16]  N. Coops,et al.  A forest structure habitat index based on airborne laser scanning data , 2016 .

[17]  Bernhard Höfle,et al.  URBAN TREE CLASSIFICATION USING FULL-WAVEFORM AIRBORNE LASER SCANNING , 2016 .

[18]  Veronika Braunisch,et al.  Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure , 2016 .

[19]  M. Betts,et al.  Microclimate predicts within‐season distribution dynamics of montane forest birds , 2016 .

[20]  Wataru Fukui,et al.  Fine-scale characterization of bird habitat using airborne LiDAR in an urban park in Japan , 2016 .

[21]  R. Brandl,et al.  Contrasting performance of Lidar and optical texture models in predicting avian diversity in a tropical mountain forest , 2016 .

[22]  Joseph D. Holbrook,et al.  Occupancy of red‐naped sapsuckers in a coniferous forest: using LiDAR to understand effects of vegetation structure and disturbance , 2015, Ecology and evolution.

[23]  Walter Jetz,et al.  Global priorities for an effective information basis of biodiversity distributions , 2015, Nature Communications.

[24]  C. A. Mücher,et al.  Environmental science: Agree on biodiversity metrics to track from space , 2015, Nature.

[25]  Y. Yom-Tov,et al.  Linking vertebrate species richness to tree canopy height on a global scale , 2015 .

[26]  J. V. Remsen,et al.  HBW and BirdLife International Illustrated Checklist of the Birds of the World Volume 1: Non‐passerines Josep del Hoyo and Nigel J. Collar 2014. Lynx Edicions, Barcelona. 903 pages, hundreds of color plates. ISBN 9788496553941. $209 (Hardcover) , 2015 .

[27]  Peter van Oosterom,et al.  Massive point cloud data management: Design, implementation and execution of a point cloud benchmark , 2015, Comput. Graph..

[28]  K. Olsen,et al.  The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps , 2015 .

[29]  P. K. Bøcher,et al.  Habitat and nest site preferences of Red-backed Shrike (Lanius collurio) in western Denmark. , 2015 .

[30]  Gregory P Asner,et al.  Advances in animal ecology from 3D-LiDAR ecosystem mapping. , 2014, Trends in ecology & evolution.

[31]  Soyeon Bae,et al.  Comparison of airborne lidar, aerial photography, and field surveys to model the habitat suitability of a cryptic forest species – the hazel grouse , 2014 .

[32]  David A. Coomes,et al.  Applications of airborne lidar for the assessment of animal species diversity , 2014 .

[33]  H. Kreft,et al.  Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. , 2014, Ecology letters.

[34]  Txomin Hermosilla,et al.  Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates , 2014 .

[35]  Norbert Pfeifer,et al.  OPALS - A framework for Airborne Laser Scanning data analysis , 2014, Comput. Environ. Urban Syst..

[36]  Shelley A. Hinsley,et al.  Assessing Habitats and Organism-Habitat Relationships by Airborne Laser Scanning , 2014 .

[37]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[38]  E. Næsset,et al.  Forestry applications of airborne laser scanning : concepts and case studies , 2014 .

[39]  Barbara Koch,et al.  Segmentation of forest to tree objects , 2014 .

[40]  Wolfgang Schwanghart,et al.  Spatial bias in the GBIF database and its effect on modeling species' geographic distributions , 2014, Ecol. Informatics.

[41]  E. Næsset,et al.  Forestry Applications of Airborne Laser Scanning , 2014, Managing Forest Ecosystems.

[42]  Patrick Adam,et al.  Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale , 2013, PloS one.

[43]  Veronika Braunisch,et al.  Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment , 2013, Biodiversity and Conservation.

[44]  Veronika Braunisch,et al.  Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale , 2013 .

[45]  Gregory P. Asner,et al.  Lion hunting behaviour and vegetation structure in an African savanna , 2013, Animal Behaviour.

[46]  Jinha Jung,et al.  Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics of vertical forest structure in a neotropical rainforest , 2012, Landscape Ecology.

[47]  Lindsey S. Smart,et al.  Three-dimensional characterization of pine forest type and red-cockaded woodpecker habitat by small-footprint, discrete-return lidar , 2012 .

[48]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[49]  Norbert Pfeifer,et al.  Categorizing Wetland Vegetation by Airborne Laser Scanning on Lake Balaton and Kis-Balaton, Hungary , 2012, Remote. Sens..

[50]  Erle C. Ellis,et al.  Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations , 2012, Frontiers in Ecology and the Environment.

[51]  Marc Simard,et al.  Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion , 2012, PloS one.

[52]  Markus Hollaus,et al.  Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data , 2012 .

[53]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[54]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[55]  Roland Brandl,et al.  Composition versus physiognomy of vegetation as predictors of bird assemblages: the role of lidar. , 2010 .

[56]  Marco Heurich,et al.  Using airborne laser scanning to model potential abundance and assemblages of forest passerines. , 2009 .

[57]  Nathaniel E Seavy,et al.  Riparian bird response to vegetation structure: a multiscale analysis using LiDAR measurements of canopy height. , 2009, Ecological applications : a publication of the Ecological Society of America.

[58]  G. Henebry,et al.  Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions , 2009 .

[59]  Richard K. Broughton,et al.  Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain , 2009 .

[60]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[61]  L. Vierling,et al.  Lidar: shedding new light on habitat characterization and modeling , 2008 .

[62]  S. Goetz,et al.  Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA , 2006 .

[63]  Richard Field,et al.  ENERGY, WATER, AND BROAD‐SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS , 2003 .

[64]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[65]  Shelley A. Hinsley,et al.  Quantifying woodland structure and habitat quality for birds using airborne laser scanning , 2002 .

[66]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[67]  B. Pavlik Species Diversity in Ecological Communities: Historical and Geographical Perspectives by R. E. Ricklefs, D. Schluter , 1995 .

[68]  R. Macarthur,et al.  On Bird Species Diversity , 1961 .

[69]  J. C. Dunlavy Studies on the Phyto-Vertical Distribution of Birds , 1935 .