Towards an Extrinsic, CG-XFEM Approach Based on Hierarchical Enrichments for Modeling Progressive Fracture

[Summary] We propose an extrinsic, continuous-Galerkin (CG), extended finite element method (XFEM) that generalizes the work of Hansbo and Hansbo to allow multiple Heaviside enrichments within a single element in a hierarchical manner. This approach enables complex, evolving XFEM surfaces in 3D that cannot be captured using existing CG-XFEM approaches. We describe an implementation of the method for 3D static elasticity with linearized strain for modeling open cracks as a salient step towards modeling progressive fracture. The implementation includes a description of the finite element model, hybrid implicit/explicit representation of enrichments, numerical integration method, and novel degree-of-freedom (DoF) enumeration algorithm. This algorithm supports an arbitrary number of enrichments within an element, while simultaneously maintaining a CG solution across elements. Additionally, our approach easily allows an implementation suitable for distributed computing systems. Enabled by the DoF enumeration algorithm, the proposed method lays the groundwork for a computational tool that efficiently models progressive fracture. To facilitate a discussion of the complex enrichment hierarchies, we develop enrichment diagrams to succinctly describe and visualize the relationships between the enrichments (and the fields they create) within an element. This also provides a unified language for discussing extrinsic XFEM methods in the literature. We compare several methods, relying on the enrichment diagrams to highlight their nuanced differences. ∗Corresponding author Preprint submitted to Elsevier May 3, 2021 ar X iv :2 10 4. 14 70 4v 1 [ cs .C E ] 3 0 A pr 2 02 1

[1]  Endel Iarve,et al.  Mesh‐independent matrix cracking and delamination modeling in laminated composites , 2011 .

[2]  P. Kerfriden,et al.  Minimum energy multiple crack propagation. Part I: Theory and state of the art review , 2017 .

[3]  S. Bordas,et al.  Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling , 2011 .

[4]  Christos Davatzikos,et al.  Low-constant parallel algorithms for finite element simulations using linear octrees , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[5]  Timon Rabczuk,et al.  A new crack tip element for the phantom‐node method with arbitrary cohesive cracks , 2008 .

[6]  L. Sluys,et al.  Towards a generalization of a discrete strong discontinuity approach , 2009 .

[7]  Erdogan Madenci,et al.  Predicting crack propagation with peridynamics: a comparative study , 2011 .

[8]  Logah Perumal,et al.  A Brief Review on Polygonal/Polyhedral Finite Element Methods , 2018, Mathematical Problems in Engineering.

[9]  R. Brockman,et al.  Strength Prediction in Open Hole Composite Laminates by Using Discrete Damage Modeling , 2011 .

[10]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[11]  Soheil Soghrati,et al.  Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations , 2014, J. Comput. Phys..

[12]  Markus H. Gross,et al.  A Finite Element Method on Convex Polyhedra , 2007, Comput. Graph. Forum.

[13]  Tong Earn Tay,et al.  A floating node method for the modelling of discontinuities in composites , 2014 .

[14]  Ted Belytschko,et al.  A comment on the article ``A finite element method for simulation of strong and weak discontinuities in solid mechanics'' by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540] , 2006 .

[15]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[16]  X. J. Fang,et al.  An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials , 2011 .

[17]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[18]  Hyun Gyu Kim,et al.  A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems , 2017 .

[19]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[20]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[21]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[22]  조수원 University of Maryland at College Park의 곤충학과 소개 , 1997 .

[23]  Tao Chen,et al.  An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems , 2018 .

[24]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[25]  Ted Belytschko,et al.  Element‐local level set method for three‐dimensional dynamic crack growth , 2009 .

[26]  Mischa Jahn,et al.  An automated hierarchical eXtended finite element approach for multiphysics problems involving discontinuities , 2018 .

[27]  Daosheng Ling,et al.  An augmented finite element method for modeling arbitrary discontinuities in composite materials , 2009 .

[28]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[29]  Stewart Andrew Silling,et al.  Crack nucleation in a peridynamic solid , 2010 .

[30]  B. R. Seshadri,et al.  Validation of Floating Node Method Using Three-Point Bend Doubler Under Quasi-Static Loading , 2019, AIAA Scitech 2019 Forum.

[31]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[32]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[33]  Phill-Seung Lee,et al.  Phantom-node method for shell models with arbitrary cracks , 2012 .

[34]  Santi S. Adavani,et al.  Dendro: Parallel algorithms for multigrid and AMR methods on 2:1 balanced octrees , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[35]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[36]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[37]  Philippe H. Geubelle,et al.  An interface‐enriched generalized FEM for problems with discontinuous gradient fields , 2012 .

[38]  Jaedal Jung,et al.  A three dimensional augmented finite element for modeling arbitrary cracking in solids , 2016, International Journal of Fracture.

[39]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[40]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[41]  G. Cusatis,et al.  Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory , 2011 .

[42]  L. J. Sluys,et al.  A discrete strong discontinuity approach , 2009 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[45]  I. Babuska,et al.  The generalized finite element method , 2001 .

[46]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[47]  J. Jung,et al.  Augmented finite-element method for arbitrary cracking and crack interaction in solids under thermo-mechanical loadings , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  X. F. Hu,et al.  Modelling delamination migration using virtual embedded cohesive elements formed through floating nodes , 2018, Composite Structures.

[49]  L. Sluys,et al.  A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements , 2009 .

[50]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[51]  S. Pinho,et al.  AN EXTENED PHANTOM NODE METHOD FOR CRACK INTERACTIONS IN COMPOSITES , 2014 .

[52]  Gabriella Bolzon Formulation of a triangular finite element with an embedded interface via isoparametric mapping , 2001 .

[53]  Xianyue Su,et al.  A Conforming Augmented Finite Element Method for Modeling Arbitrary Cracking in Solids , 2019, Journal of Applied Mechanics.

[54]  Xuhai Tang,et al.  A novel virtual node method for polygonal elements , 2009 .

[55]  B. Cassenti,et al.  Phase field modeling of fracture and crack growth , 2019, Engineering Fracture Mechanics.

[56]  Vincent B. C. Tan,et al.  Modelling delamination migration in angle-ply laminates , 2017 .

[57]  Thomas-Peter Fries,et al.  Overview and comparison of different variants of the XFEM , 2014 .

[58]  T. Belytschko,et al.  The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns , 2006 .

[59]  L. J. Sluys,et al.  Non-homogeneous displacement jumps in strong embedded discontinuities , 2003 .

[60]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[61]  James A. Evans,et al.  Adaptive level set topology optimization using hierarchical B-splines , 2019, Structural and Multidisciplinary Optimization.

[62]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[63]  L. J. Sluys,et al.  A phantom node formulation with mixed mode cohesive law for splitting in laminates , 2009 .

[64]  Eliot Fried,et al.  Sharp-crack limit of a phase-field model for brittle fracture , 2013 .

[65]  Endel V. Iarve,et al.  Mesh independent modelling of cracks by using higher order shape functions , 2003 .

[66]  Sören Östlund,et al.  FEM-remeshing technique applied to crack growth problems , 1998 .

[67]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .