Fast distributed coordinate descent for non-strongly convex losses
暂无分享,去创建一个
Peter Richtárik | Martin Takác | Zheng Qu | Olivier Fercoq | Peter Richtárik | Martin Takác | Zheng Qu | Olivier Fercoq
[1] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .
[2] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[3] Joseph K. Bradley,et al. Parallel Coordinate Descent for L1-Regularized Loss Minimization , 2011, ICML.
[4] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[5] Shai Shalev-Shwartz,et al. Stochastic dual coordinate ascent methods for regularized loss , 2012, J. Mach. Learn. Res..
[6] Avleen Singh Bijral,et al. Mini-Batch Primal and Dual Methods for SVMs , 2013, ICML.
[7] Peter Richtárik,et al. Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..
[8] Peter Richtárik,et al. Distributed Coordinate Descent Method for Learning with Big Data , 2013, J. Mach. Learn. Res..
[9] Peter Richtárik,et al. Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.
[10] Peter Richtárik,et al. Smooth minimization of nonsmooth functions with parallel coordinate descent methods , 2013, Modeling and Optimization: Theory and Applications.