Partitioning a chordal graph into transitive subgraphs for parallel sparse triangular solution
暂无分享,去创建一个
[1] Joseph W. H. Liu,et al. Reordering sparse matrices for parallel elimination , 1989, Parallel Comput..
[2] Joseph W. H. Liu,et al. A Linear Reordering Algorithm for Parallel Pivoting of Chordal Graphs , 1989, SIAM J. Discret. Math..
[3] R. Schreiber,et al. Highly Parallel Sparse Triangular Solution , 1994 .
[4] Andrew Harry Sherman,et al. On the efficient solution of sparse systems of linear and nonlinear equations. , 1975 .
[5] Douglas R. Shier,et al. Some aspects of perfect elimination orderings in chordal graphs , 1984, Discret. Appl. Math..
[6] Barry W. Peyton,et al. A Clique Tree Algorithm for Partitioning A Chordal Graph into Transitive Subgraphs , 1994 .
[7] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[8] Fernando L. Alvarado,et al. A Fast Reordering Algorithm for Parallel Sparse Triangular Solution , 1992, SIAM J. Sci. Comput..
[9] Alan George,et al. The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..
[10] Joseph W. H. Liu. The role of elimination trees in sparse factorization , 1990 .
[11] J. G. Lewis,et al. A fast algorithm for reordering sparse matrices for parallel factorization , 1989 .
[12] Fernando L. Alvarado,et al. Optimal Parallel Solution of Sparse Triangular Systems , 1993, SIAM J. Sci. Comput..
[13] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .