GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS USING POSETS AND DIGRAPHS
暂无分享,去创建一个
In this paper the resources of the theory of partially ordered sets (posets) and the theory of digraphs are used to aid the task of global analysis of nonlinear dynamical systems. The basic idea underpinning this approach is the primitive notion that a dynamical systems is simply an ordering machine which assigns fore-and-after relations for pairs of states. In order to make the linkage between the theory of posets and digraphs and dynamical systems, cell mapping is used to put dynamical systems in their discretized form and an essential concept of self-cycling sets is used. After a discussion of the basic notion of ordering, appropriate results from the theory of posets and digraphs are adapted for the purpose of determining the global evolution properties of dynamical systems. In terms of posets, evolution processes and strange attractors can be studied in a new light. It is believed that this approach offers us a new way to examine the multifaceted complex behavior of nonlinear systems. Computation algorithms are also discussed and an example of application is included.