Schmidt number for X-entanglement of photon pairs

We calculate the Schmidt number for a two-dimensional model of the nonfactorable spatiotemporal wave-function of biphotons produced in type-I spontaneous parametric down-conversion with degenerate and collinear phase- matching taking into consideration a major part of the broad spectral and angular bandwidth of the down- converted light. We derive an analytical expression for the Schmidt number as a function of the filter bandwidth in the limit of spectrally narrow pump.

[1]  Sergei Ya. Kilin,et al.  Chapter 1 Quanta and information , 2001 .

[2]  M. Efremov,et al.  Spontaneous parametric down-conversion: Anisotropical and anomalously strong narrowing of biphoton momentum correlation distributions , 2008 .

[3]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[4]  L. Caspani,et al.  X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation. , 2009, Physical Review Letters.

[5]  Rubin,et al.  Transverse correlation in optical spontaneous parametric down-conversion. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  L. Caspani,et al.  Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion , 2010 .

[7]  Bahaa E. A. Saleh,et al.  Multiparameter entanglement in quantum interferometry , 2002 .

[8]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[9]  A. Gatti,et al.  Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion , 2003, quant-ph/0306116.

[10]  J H Eberly,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2004, Physical review letters.

[11]  A. Gatti,et al.  Multi-photon, multi-mode polarization entanglement in parametric down-conversion , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[12]  Law,et al.  Continuous frequency entanglement: effective finite hilbert space and entropy control , 2000, Physical review letters.

[13]  Hong,et al.  Theory of parametric frequency down conversion of light. , 1985, Physical review. A, General physics.

[14]  M. Kolobov The spatial behavior of nonclassical light , 1999 .

[15]  L. Caspani,et al.  Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion , 2010 .

[16]  S Trillo,et al.  Nonlinear electromagnetic X waves. , 2003, Physical review letters.