Structural damage detection using virtual passive controllers

This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures. The passive control system which mimics the mass-spring-dashpot is an energy dissipation device augmenting the system damping and thus guarantees the closed-loop system stability. Two damage detection techniques are developed. One technique uses a direct output feedback controller whereas the other technique uses the second-order dynamic feedback controller. The change in the identified natural frequencies, which are generally much less sensitive to noise and environmental uncertainties than the identified mode shapes, are used for damage detection. A least-squares technique, which is based on the sensitivity of the natural frequencies to the damage variables, is used for accurately identifying the damage variables.

[1]  R. C. Mcmaster Nondestructive testing handbook , 1959 .

[2]  Roy R. Craig,et al.  Structural Dynamics: An Introduction to Computer Methods , 1981 .

[3]  G. B. Warburton Structural dynamics—an introduction to computer methods, Roy R. Craig Jr, Wiley, New York, 1981. No. of pages: 527. Price: £20·45 , 1982 .

[4]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .

[5]  J. Juang,et al.  Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction] , 1991 .

[6]  Richard W. Longman,et al.  PASSIVE DYNAMIC CONTROLLERS FOR NONLINEAR MECHANICAL SYSTEMS , 1991 .

[7]  Minh Q. Phan,et al.  Robust controller designs for second-order dynamic systems - A virtual passive approach , 1991 .

[8]  S. Smith,et al.  SECANT-METHOD ADJUSTMENT FOR STRUCTURAL MODELS , 1989 .

[9]  W. Keith Belvin,et al.  Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction] , 1991 .

[10]  Minh Q. Phan,et al.  Robust controller designs for second-order dynamic systems - A virtual passive approach , 1992 .

[11]  David C. Zimmerman,et al.  Structural damage detection using a subspace rotation algorithm , 1992 .

[12]  Jer-Nan Juang,et al.  OPTIMAL ACTIVE VIBRATION ABSORBER: DESIGN AND EXPERIMENTAL RESULTS , 1992 .

[13]  Richard W. Longman,et al.  PASSIVE DYNAMIC CONTROLLERS FOR NONLINEAR MECHANICAL SYSTEMS , 1993 .

[14]  Jer-Nan Juang,et al.  A robust controller for second-order systems using acceleration measurements , 1993 .

[15]  Kirsten Morris,et al.  Dissipative controller designs for second-order dynamic systems , 1994, IEEE Trans. Autom. Control..

[16]  Jiann-Shiun Lew,et al.  Using transfer function parameter changes for damage detection of structures , 1995 .

[17]  Jiann-Shiun Lew,et al.  Using transfer function parameter changes for damage detection of structures , 1995 .

[18]  Martin T. Hagan,et al.  Neural network design , 1995 .

[19]  Charles R. Farrar,et al.  Comparison of damage identification algorithms on experimental modal data from a bridge , 1995 .

[20]  Jer-Nan Juang,et al.  A Robust Controller for Second-Order Systems Using Acceleration Measurements , 1997 .

[21]  Lei Tian,et al.  Damage detection in smart structures through sensitivity-enhancing feedback control , 1999, Smart Structures.

[22]  J.-S. Lew Damage detection using neural networks and transfer function correlation , 2000 .

[23]  Laura E. Ray,et al.  Enhancement of Damage Identification Through Structural Matrix Assignment , 2003 .

[24]  K. Kanaka Raju,et al.  Thermal postbuckling of uniform spring-hinged columns using a simple method , 2003 .