Entanglement Dynamics Between Two Atoms Within Different W-like Initial States

We investigate the entanglement dynamics between two atoms which are trapped in an optical cavity with the help of the concurrence and the negativity for two different kinds of normalized W-like initial states. The results show that one of them can suffer the so-called entanglement sudden death (ESD) depending on parameters of the initial state when the optical cavity in the vacuum state, while the other one does not for whatever parameters. However when the initial optical cavity photon number is nonzero, no matter what W-like state as atoms’ initial state, the atoms’ subsystem always undergoes the ESD phenomenon. Meanwhile, by comparing concurrence with negativity, we find that our model gives a concrete example to support the conclusions in the previous reference.

[1]  B. Moor,et al.  A comparison of the entanglement measures negativity and concurrence , 2001, quant-ph/0108021.

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[3]  J Laurat,et al.  Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. , 2007, Physical review letters.

[4]  S. Walborn,et al.  Determining the Dynamics of Entanglement , 2009, Science.

[5]  张寿,et al.  Entanglement dynamics of two distant atoms in two detuning cavities , 2010 .

[6]  T. Yu,et al.  Sudden death of entanglement of two Jaynes–Cummings atoms , 2006, quant-ph/0602206.

[7]  L. Qiu,et al.  Time evolution of pairwise entanglement between two atoms , 2008 .

[8]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  A study on the sudden death of entanglement , 2006, quant-ph/0612145.

[10]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[11]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[12]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[13]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[14]  Jian-Song Zhang Controlling entanglement sudden death and birth in cavity QED , 2009, 0906.1336.

[15]  J. Eberly,et al.  Pairwise concurrence dynamics: a four-qubit model , 2007, quant-ph/0701111.

[16]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[17]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[18]  Yihang Nie,et al.  Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom , 2007 .

[19]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[20]  Z. Man,et al.  Entanglement dynamics of W-like states within the framework of triple Jaynes–Cummings model , 2009 .

[21]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.