A new basis for osculatory interpolation problems and applications
暂无分享,去创建一个
[1] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[2] R. E. Carlson,et al. Monotone Piecewise Cubic Interpolation , 1980 .
[3] Alexandru Mihai Bica,et al. Fitting data using optimal Hermite type cubic interpolating splines , 2012, Appl. Math. Lett..
[4] Larry L. Schumaker,et al. Spline functions - computational methods , 2015 .
[5] R. Peter Dube,et al. Univariate Blending Functions and Alternatives , 1977 .
[6] Carla Manni. On Shape Preserving C2 Hermite Interpolation , 2001 .
[7] Manabu Sakai,et al. Osculatory interpolation , 2001, Comput. Aided Geom. Des..
[8] R. E. Grundy. Hermite interpolation visits ordinary two-point boundary value problems , 2007, The ANZIAM Journal.
[9] M. Newman,et al. Interpolation and approximation , 1965 .
[10] Ahmed Tijini,et al. A simple method for smoothing functions and compressing Hermite data , 2005, Adv. Comput. Math..
[11] E. Passow,et al. MONOTONE AND CONVEX SPLINE INTERPOLATION , 1977 .
[12] A. K. Cline. Scalar- and planar-valued curve fitting using splines under tension , 1974, Commun. ACM.
[13] G. Phillips. Explicit forms for certain Hermite approximations , 1973 .
[14] Hans-Peter Seidel. On Hermite interpolation with B-splines , 1991, Comput. Aided Geom. Des..
[15] Larry I. Schumaker. ON SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION , 1983 .
[16] A. L. Perrie. Uniform Rational Approximation with Osculatory Interpolation , 1970, J. Comput. Syst. Sci..