Computing in Geometrical Constrained Excitable Chemical Systems

[1]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[2]  Zoltán Noszticzius,et al.  Chemical waves in modified membranes I: developing the technique , 1995 .

[3]  Nicholas G. Rambidi Biologically Inspired Information Processing Technologies: Reaction-Diffusion Paradigm , 2005, Int. J. Unconv. Comput..

[4]  J Gorecki,et al.  T-shaped coincidence detector as a band filter of chemical signal frequency. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[6]  H. Swinney,et al.  Sustained chemical waves in an annular gel reactor: a chemical pinwheel , 1987, Nature.

[7]  Andrew Adamatzky Programming Reaction-Diffusion Processors , 2004, UPP.

[8]  F. T. Arecchi,et al.  Excitability following an avalanche-collapse process , 1997 .

[9]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[10]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[11]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[12]  Jerzy Gorecki,et al.  Passive barrier as a transformer of chemical signal frequency , 2002 .

[13]  K. Showalter,et al.  Anisotropy and spiral organizing centers in patterned excitable media. , 1995, Science.

[14]  Hiroshi Iwasaki,et al.  Unidirectional Propagation of Chemical Waves through Microgaps between Zones with Different Excitability , 2000 .

[15]  Jerzy Gorecki,et al.  Logical Functions of a Cross Junction of Excitable Chemical Media , 2001 .

[16]  Kenneth Showalter,et al.  Chemical Wave Logic Gates , 1996 .

[17]  Stephen K. Scott,et al.  Propagation of chemical waves across inexcitable gaps , 2003 .

[18]  Tomohiko Yamaguchi,et al.  Finding the optimal path with the aid of chemical wave , 1997 .

[19]  J Gorecki,et al.  Sensing the distance to a source of periodic oscillations in a nonlinear chemical medium with the output information coded in frequency of excitation pulses. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Jerzy Gorecki,et al.  On Chemical Methods of Direction and Distance Sensing , 2009, Int. J. Unconv. Comput..

[21]  Kenichi Yoshikawa,et al.  Direction detector on an excitable field: field computation with coincidence detection. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Milos Dolnik,et al.  Phase excitation curves in the model of forced excitable reaction systems , 1991 .

[23]  Kenneth Showalter,et al.  Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos , 1996 .

[24]  Andrew Adamatzky,et al.  Three-valued logic gates in reaction–diffusion excitable media , 2005 .

[25]  N. Rambidi,et al.  Neural network devices based on reaction–duffusion media: an approach to artificial retina , 1998 .

[26]  Kenneth Showalter,et al.  Chemical waves and patterns , 1995 .

[27]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[28]  Milos Dolnik,et al.  Excitable chemical reaction systems in a continuous stirred tank reactor , 1990 .

[29]  K. Showalter,et al.  Navigating Complex Labyrinths: Optimal Paths from Chemical Waves , 1995, Science.

[30]  Milos Dolnik,et al.  Resonances in periodically forced excitable systems , 1992 .

[31]  A. M. Zhabotinskii,et al.  Mechanism and mathematical model of the oscillating bromate-ferroin-bromomalonic acid reaction , 1984 .

[32]  N G Rambidi,et al.  Finding paths in a labyrinth based on reaction-diffusion media. , 1999, Bio Systems.

[33]  Katharina Krischer,et al.  Oscillatory CO oxidation on Pt(110) : modeling of temporal self-organization , 1992 .

[34]  Kenichi Yoshikawa,et al.  Information operations with multiple pulses on an excitable field , 2003 .

[35]  Oliver Steinbock Excitable front geometry in reaction-diffusion systems with anomalous dispersion. , 2002, Physical review letters.

[36]  Oliver Steinbock,et al.  Anomalous Dispersion of Chemical Waves in a Homogeneously Catalyzed Reaction System , 2000 .

[37]  Kenichi Yoshikawa,et al.  Unidirectional wave propagation in one spatial dimension , 2001 .

[38]  Tomohiko Yamaguchi,et al.  An Oregonator-Class Model for Photoinduced Behavior in the Ru(bpy)32+-Catalyzed Belousov−Zhabotinsky Reaction , 2000 .

[39]  A. V. Maximychev,et al.  Towards a biomolecular computer. Information processing capabilities of biomolecular nonlinear dynamic media. , 1997, Bio Systems.

[40]  L Glass,et al.  Paroxysmal starting and stopping of circulating waves in excitable media. , 2000, Physical review letters.

[41]  J. Rinzel,et al.  The role of dendrites in auditory coincidence detection , 1998, Nature.

[42]  Jerzy Gorecki,et al.  Chemical Information Processing Devices Constructed Using a Nonlinear Medium with Controlled Excitability , 2006, UC.

[43]  J Gorecka,et al.  Multiargument logical operations performed with excitable chemical medium. , 2006, The Journal of chemical physics.

[44]  A. L. Kawczyński,et al.  Molecular Dynamics Simulations of a Thermochemical System in Bistable and Excitable Regimes , 1996 .

[45]  Andrew Adamatzky,et al.  Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Kenichi Yoshikawa,et al.  On Chemical Reactors That Can Count , 2003 .

[47]  Yasuhiro Igarashi,et al.  One dimensional chemical signal diode constructed with two nonexcitable barriers. , 2007, The journal of physical chemistry. A.

[48]  Hiroshi Iwasaki,et al.  Anisotropic Waves Propagating on Two-Dimensional Arrays of Belousov-Zhabotinsky Oscillators , 1999 .

[49]  L. Kuhnert,et al.  Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinskii systems , 1990 .

[50]  Petteri Kettunen,et al.  Chemical clocks on the basis of rotating waves. Measuring irrational numbers from period ratios , 1996 .

[51]  中田 聡 Chemical analysis based on nonlinearity , 2003 .

[52]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[53]  Kenneth Showalter,et al.  Control of waves, patterns and turbulence in chemical systems , 2006 .

[54]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[55]  Alexander S Mikhailov,et al.  Pattern formation on the edge of chaos: mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  A Hjelmfelt,et al.  Pattern recognition, chaos, and multiplicity in neural networks of excitable systems. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  K. Yoshikawa,et al.  Information operations with an excitable field. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Howard R. Petty,et al.  Intracellular Calcium Waves Accompany Neutrophil Polarization, Formylmethionylleucylphenylalanine Stimulation, and Phagocytosis: A High Speed Microscopy Study1 , 2003, The Journal of Immunology.

[59]  J Gorecki,et al.  On one dimensional chemical diode and frequency generator constructed with an excitable surface reaction. , 2005, Physical chemistry chemical physics : PCCP.

[60]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[61]  Kenichi Yoshikawa,et al.  Different operations on a single circuit: Field computation on an excitable chemical system , 2003 .

[62]  Jerzy Gorecki,et al.  Information Processing with Chemical Excitations - from Instant Machines to an Artificial Chemical Brain , 2006, Int. J. Unconv. Comput..

[63]  Kenneth Showalter,et al.  Regular and irregular spatial patterns in an immobilized-catalyst Belousov-Zhabotinskii reaction , 1989 .

[64]  R. Suzuki,et al.  Mathematical analysis and application of iron-wire neuron model. , 1967, IEEE transactions on bio-medical engineering.

[65]  J. Gorecki,et al.  Complex transformations of chemical signals passing through a passive barrier. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  K. Yoshikawa,et al.  Real-time memory on an excitable field. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  V A Davydov,et al.  Propagation of Curved Activation Fronts in Anisotropic Excitable Media , 1999, Journal of biological physics.

[68]  Kenichi Yoshikawa,et al.  Propagation of Chemical Waves at the Boundary of Excitable and Inhibitory Fields , 2000 .

[69]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[70]  Oliver Steinbock,et al.  Microfluidic Systems for the Belousov−Zhabotinsky Reaction , 2004 .

[71]  Milos Dolnik,et al.  Dynamics of forced excitable and oscillatory chemical reaction systems , 1989 .

[72]  A. B. Rovinskii Spiral waves in a model of the ferroin catalyzed Belousov-Zhabotinskii reaction , 1986 .

[73]  Zoltán Noszticzius,et al.  Rotating chemical waves: theory and experiments , 1999 .

[74]  Tomohiko Yamaguchi,et al.  Numerical study on time delay for chemical wave transmission via an inactive gap , 1997 .

[75]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[76]  N G Rambidi,et al.  Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Chaiya Luengviriya,et al.  An elegant method to study an isolated spiral wave in a thin layer of a batch Belousov-Zhabotinsky reaction under oxygen-free conditions. , 2006, Physical chemistry chemical physics : PCCP.

[78]  Stephen K. Scott,et al.  Modelling wave propagation across a series of gaps , 2004 .

[79]  M. Beck,et al.  The Influence of Visible Light on the Beloasoy-Zhabotinskii Oscillating Reactions applying Different Catalysts , 1983 .

[80]  N G Rambidi Towards a biomolecular computer. , 1992, Bio Systems.

[81]  Alina Ciach,et al.  Response of the bicontinuous cubic D phase in amphiphilic systems to compression or expansion , 2003 .

[82]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[83]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .