Rational design of allosteric modulators: Challenges and successes

Recent advances in structural biology and computational techniques have revealed allosteric mechanisms for an abundance of targets leading to the establishment of rational design of allosteric modulators as a new avenue for drug discovery. Considering that allostery is an intrinsic property of the protein conformational ensemble, allosteric drug design has the potential to develop into an innovative approach to modulate the dysregulation of therapeutic targets that are considered to be undruggable at their orthosteric site, explore strategic design opportunities to tackle new chemical space, or develop mutant‐specific therapies to target mutations occurring far from the enzyme active site. Traditionally, allosteric drug discovery has been performed through high‐throughput screening or through serendipitous discoveries; however, recent developments in structure‐based and ligand‐based methods have led to exciting advancements of designing bioactive allosteric ligands rationally. In this review article, we highlight the advantages and disadvantages of allosteric modulators and present structure‐based and ligand‐based drug design methodologies for the identification of allosteric binding sites and allosteric modulators. We also illustrate representative studies for the design allosteric modulators for proteins belonging to a wide range of protein families, also considering irreversible binding with covalent allosteric modulators. Additionally, we analyze challenges and successes in the rational design of allosteric inhibitors and activators. Finally, we present the future of rational allosteric ligand design with newly built computational tools that we expect to be applied in future studies, concluding to theoretical and practical guidelines for allosteric ligand design strategies and identify knowledge gaps that need to be addressed to improve efficiency in allosteric drug design.

[1]  William L Jorgensen,et al.  Computer-aided discovery of anti-HIV agents. , 2016, Bioorganic & medicinal chemistry.

[2]  Enrico Guarnera,et al.  AlloSigMA 2: paving the way to designing allosteric effectors and to exploring allosteric effects of mutations , 2020, Nucleic Acids Res..

[3]  David E. Shaw,et al.  PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results , 2006, J. Comput. Aided Mol. Des..

[4]  R. Mostoslavsky,et al.  Chromatin and beyond: the multitasking roles for SIRT6. , 2014, Trends in biochemical sciences.

[5]  M. V. Vander Heiden,et al.  Human Phosphoglycerate Dehydrogenase Produces the Oncometabolite d-2-Hydroxyglutarate , 2014, ACS chemical biology.

[6]  T. Hunter,et al.  Oncogenic kinase signalling , 2001, Nature.

[7]  Xavier Daura,et al.  Advances in the Computational Identification of Allosteric Sites and Pathways in Proteins. , 2019, Advances in experimental medicine and biology.

[8]  Z. Xiang,et al.  On the role of the crystal environment in determining protein side-chain conformations. , 2002, Journal of molecular biology.

[9]  W. L. Jorgensen,et al.  From in silico hit to long-acting late-stage preclinical candidate to combat HIV-1 infection , 2017, Proceedings of the National Academy of Sciences.

[10]  C. Yun,et al.  Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. , 2018, Biochemical and biophysical research communications.

[11]  W. Löscher,et al.  Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. , 2016, Cold Spring Harbor perspectives in medicine.

[12]  G. Cohen,et al.  Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Xiayang Qiu,et al.  Crystal structure of human osteoclast cathepsin K complex with E-64 , 1997, Nature Structural Biology.

[14]  J. Luther,et al.  Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators , 2016, Nature Structural &Molecular Biology.

[15]  Kathryn M Hart,et al.  Discovery of multiple hidden allosteric sites by combining Markov state models and experiments , 2015, Proceedings of the National Academy of Sciences.

[16]  S. Schann,et al.  Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. , 2010, Journal of medicinal chemistry.

[17]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[18]  Shoji Takada,et al.  CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. , 2011, Journal of chemical theory and computation.

[19]  F. Javier Luque,et al.  MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories , 2011, Bioinform..

[20]  M. Ferrer,et al.  Identification of Positive Allosteric Modulators of the D1 Dopamine Receptor That Act at Diverse Binding Sites , 2018, Molecular Pharmacology.

[21]  H. Bregman,et al.  The Discovery and Hit-to-Lead Optimization of Tricyclic Sulfonamides as Potent and Efficacious Potentiators of Glycine Receptors. , 2017, Journal of medicinal chemistry.

[22]  Alejandro Panjkovich,et al.  PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites , 2014, Bioinform..

[23]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[24]  Jiajia Chen,et al.  Node-Weighted Amino Acid Network Strategy for Characterization and Identification of Protein Functional Residues , 2018, J. Chem. Inf. Model..

[25]  L. Rybak,et al.  Adenosine Receptors: Expression, Function and Regulation , 2014, International journal of molecular sciences.

[26]  Brian K. Shoichet,et al.  Ligand Pose and Orientational Sampling in Molecular Docking , 2013, PloS one.

[27]  J. Changeux,et al.  Allosteric Mechanisms of Signal Transduction , 2005, Science.

[28]  T. Kenakin Chapter 5 – Allosteric Drug Effects , 2012 .

[29]  D. Kitchen,et al.  Design and Characterization of Novel Covalent Bromodomain and Extra-Terminal Domain (BET) Inhibitors Targeting a Methionine. , 2018, Journal of medicinal chemistry.

[30]  Olivier Sheik Amamuddy,et al.  Integrated Computational Approaches and Tools for Allosteric Drug Discovery , 2020, International journal of molecular sciences.

[31]  Matthew P Jacobson,et al.  Comparing Conformational Ensembles Using the Kullback-Leibler Divergence Expansion. , 2012, Journal of chemical theory and computation.

[32]  Albert C. Pan,et al.  Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs , 2013, Nature.

[33]  E. Lindahl,et al.  Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channels , 2013, Molecular Pharmacology.

[34]  A. Mai,et al.  Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules. , 2017, Angewandte Chemie.

[35]  Stefan Richter,et al.  Druggability Assessment in TRAPP Using Machine Learning Approaches , 2020, J. Chem. Inf. Model..

[36]  Gerard J. P. van Westen,et al.  Chemical, Target, and Bioactive Properties of Allosteric Modulation , 2014, PLoS Comput. Biol..

[37]  Chris de Graaf,et al.  Diazepam-bound GABAA receptor models identify new benzodiazepine binding-site ligands. , 2012, Nature chemical biology.

[38]  Zaida Luthey-Schulten,et al.  Exploring residue component contributions to dynamical network models of allostery. , 2012, Journal of chemical theory and computation.

[39]  Jianfeng Pei,et al.  Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues , 2017, J. Chem. Inf. Model..

[40]  G. Schneider,et al.  PocketPicker: analysis of ligand binding-sites with shape descriptors , 2007, Chemistry Central Journal.

[41]  Katrina W Lexa,et al.  Full protein flexibility is essential for proper hot-spot mapping. , 2011, Journal of the American Chemical Society.

[42]  N. Chen,et al.  Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. , 2019, Journal of medicinal chemistry.

[43]  Maria Deak,et al.  Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C‐terminal residues of PKA , 2000, The EMBO journal.

[44]  Shaoyong Lu,et al.  Designed covalent allosteric modulators: an emerging paradigm in drug discovery. , 2017, Drug discovery today.

[45]  Kathryn M Hart,et al.  supplementary figures , 2018 .

[46]  Luhua Lai,et al.  LigBuilder 2: A Practical de Novo Drug Design Approach , 2011, J. Chem. Inf. Model..

[47]  G. Schneider,et al.  Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. , 2014, Chemical science.

[48]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[49]  J. Andrew McCammon,et al.  Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor , 2016, Proceedings of the National Academy of Sciences.

[50]  R. Ranganathan,et al.  Evolutionarily conserved pathways of energetic connectivity in protein families. , 1999, Science.

[51]  John D Lambris,et al.  Complement-targeted therapeutics , 2007, Nature Biotechnology.

[52]  Ruben Abagyan,et al.  Docking and scoring with ICM: the benchmarking results and strategies for improvement , 2012, Journal of Computer-Aided Molecular Design.

[53]  Amanda E. Wakefield,et al.  Cryptic binding sites on proteins: definition, detection, and druggability , 2018, Current Opinion in Chemical Biology.

[54]  Xuejun Jiang,et al.  A class of allosteric caspase inhibitors identified by high-throughput screening. , 2012, Molecular cell.

[55]  F. Bushman,et al.  Developing a dynamic pharmacophore model for HIV-1 integrase. , 2000, Journal of medicinal chemistry.

[56]  Shaoyong Lu,et al.  Identification of a cellularly active SIRT6 allosteric activator , 2018, Nature Chemical Biology.

[57]  A. Brash Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Substrate* , 1999, The Journal of Biological Chemistry.

[58]  Rama Ranganathan,et al.  Evolution-Based Functional Decomposition of Proteins , 2015, bioRxiv.

[59]  W. L. Jorgensen,et al.  Structure-Based Evaluation of Non-nucleoside Inhibitors with Improved Potency and Solubility That Target HIV Reverse Transcriptase Variants , 2015, Journal of medicinal chemistry.

[60]  G. Jacoby,et al.  Updated Functional Classification of β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[61]  W. L. Jorgensen,et al.  Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase: From design to protein crystallography , 2017, Proceedings of the National Academy of Sciences.

[62]  T. Cover,et al.  Helicobacter pylori VacA, a paradigm for toxin multifunctionality , 2005, Nature Reviews Microbiology.

[63]  E. Paquet,et al.  Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review , 2015, BioMed research international.

[64]  Amit K. Gupta,et al.  Discovery of High-Affinity Noncovalent Allosteric KRAS Inhibitors That Disrupt Effector Binding , 2019, ACS omega.

[65]  Michael Sternberg,et al.  AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis , 2015, BMC Bioinformatics.

[66]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[67]  Gennady Verkhivker,et al.  Dynamics-Based Discovery of Allosteric Inhibitors: Selection of New Ligands for the C-terminal Domain of Hsp90. , 2010, Journal of chemical theory and computation.

[68]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[69]  C. Chennubhotla,et al.  Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. , 2008, Molecular bioSystems.

[70]  Maxwell I. Zimmerman,et al.  Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators , 2017, PloS one.

[71]  Shuai Li,et al.  Alloscore: a method for predicting allosteric ligand-protein interactions , 2016, Bioinform..

[72]  Ryan G. Coleman,et al.  ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..

[73]  G. Schneider,et al.  Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E‐cadherin to disrupt intercellular adhesion , 2010, EMBO reports.

[74]  B. Engels,et al.  Structural and chemical insights into the covalent-allosteric inhibition of the protein kinase Akt† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc05212c , 2019, Chemical science.

[75]  R. Poljak,et al.  The three-dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. , 1991, Biochimie.

[76]  John A. Wemmie,et al.  Acid-sensing ion channels in pain and disease , 2013, Nature Reviews Neuroscience.

[77]  G. Colombo,et al.  Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. , 2018, Journal of medicinal chemistry.

[78]  Heather A Carlson,et al.  Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case. , 2004, Journal of the American Chemical Society.

[79]  D. Goodsell,et al.  Automated prediction of ligand‐binding sites in proteins , 2007, Proteins.

[80]  N. Thornberry,et al.  A Combinatorial Approach Defines Specificities of Members of the Caspase Family and Granzyme B , 1997, The Journal of Biological Chemistry.

[81]  Stefan Zeuzem,et al.  Allosteric activation of the protein kinase PDK1 with low molecular weight compounds , 2006, The EMBO journal.

[82]  J. Changeux,et al.  International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands , 2014, Pharmacological Reviews.

[83]  Luhua Lai,et al.  Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation. , 2015, Accounts of chemical research.

[84]  D. Drucker,et al.  Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. , 2002, Receptors & channels.

[85]  Hua Yu,et al.  STATs in cancer inflammation and immunity: a leading role for STAT3 , 2009, Nature Reviews Cancer.

[86]  Heather A Carlson,et al.  MixMD Probeview: Robust Binding Site Prediction from Cosolvent Simulations , 2018, J. Chem. Inf. Model..

[87]  Ruth Nussinov,et al.  The design of covalent allosteric drugs. , 2015, Annual review of pharmacology and toxicology.

[88]  Rommie E. Amaro,et al.  POVME 3.0: Software for Mapping Binding Pocket Flexibility. , 2017, Journal of chemical theory and computation.

[89]  Yu Luo,et al.  Allosite: a method for predicting allosteric sites , 2013, Bioinform..

[91]  R. Friesner,et al.  New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. , 2006, Bioorganic & medicinal chemistry.

[92]  E. Benarroch Heat shock proteins , 2011, Neurology.

[93]  R. Frye,et al.  Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. , 2000, Biochemical and biophysical research communications.

[94]  Francesco L Gervasio,et al.  Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. , 2020, Accounts of chemical research.

[95]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[96]  Elisabetta Moroni,et al.  Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands. , 2015, Chemistry.

[97]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[98]  Robert A. Weinberg,et al.  Ras oncogenes: split personalities , 2008, Nature Reviews Molecular Cell Biology.

[99]  D. Boehr,et al.  Biophysical and computational methods to analyze amino acid interaction networks in proteins , 2016, Computational and structural biotechnology journal.

[100]  Mohammad M. Sultan,et al.  Allosteric pathways in imidazole glycerol phosphate synthase , 2012, Proceedings of the National Academy of Sciences.

[101]  P. Zarrinkar,et al.  Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor , 2018, Cell.

[102]  Christopher L. McClendon,et al.  Discovery of Novel 15-Lipoxygenase Activators To Shift the Human Arachidonic Acid Metabolic Network toward Inflammation Resolution. , 2016, Journal of medicinal chemistry.

[103]  Friedrich Rippmann,et al.  TRAPP: A Tool for Analysis of Transient Binding Pockets in Proteins , 2013, J. Chem. Inf. Model..

[104]  Ioannis Filippis,et al.  Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints , 2017, Structure.

[105]  L. Pauling,et al.  The Oxygen Equilibrium of Hemoglobin and Its Structural Interpretation. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Thomas A. Halgren,et al.  Identifying and Characterizing Binding Sites and Assessing Druggability , 2009, J. Chem. Inf. Model..

[107]  David S. Palmer,et al.  Allosteric-Activation Mechanism of Bovine Chymosin Revealed by Bias-Exchange Metadynamics and Molecular Dynamics Simulations. , 2016, The journal of physical chemistry. B.

[108]  Benjamin D. Sellers,et al.  Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function , 2016, Neuron.

[109]  P Jeffrey Conn,et al.  "Molecular switches" on mGluR allosteric ligands that modulate modes of pharmacology. , 2011, Biochemistry.

[110]  Heather A Carlson,et al.  Refining the multiple protein structure pharmacophore method: consistency across three independent HIV-1 protease models. , 2006, Journal of medicinal chemistry.

[111]  R. Nussinov,et al.  Allo-network drugs: harnessing allostery in cellular networks. , 2011, Trends in pharmacological sciences.

[112]  Wei-Shau Hu,et al.  HIV-1 reverse transcription. , 2012, Cold Spring Harbor perspectives in medicine.

[113]  Maulik R. Patel,et al.  Identification of an allosteric pocket on human hsp70 reveals a mode of inhibition of this therapeutically important protein. , 2013, Chemistry & biology.

[114]  Hongyu Zhou,et al.  Recognition of protein allosteric states and residues: Machine learning approaches , 2018, J. Comput. Chem..

[115]  Brian K. Shoichet,et al.  Rapid Context-Dependent Ligand Desolvation in Molecular Docking , 2010, J. Chem. Inf. Model..

[116]  Johannes Buchner,et al.  Molecular chaperones--cellular machines for protein folding. , 2002, Angewandte Chemie.

[117]  Joe G Greener,et al.  Structure-based prediction of protein allostery. , 2018, Current opinion in structural biology.

[118]  R. Nussinov,et al.  Is allostery an intrinsic property of all dynamic proteins? , 2004, Proteins.

[119]  Tianxiang Chen,et al.  MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer , 2020, Acta Pharmacologica Sinica.

[120]  L. Lai,et al.  Identifying Allosteric Binding Sites in Proteins with a Two-State Go̅ Model for Novel Allosteric Effector Discovery. , 2012, Journal of chemical theory and computation.

[121]  Wesley M. Botello-Smith,et al.  Robust Determination of Protein Allosteric Signaling Pathways. , 2019, Journal of chemical theory and computation.

[122]  G. Booz,et al.  An Update on the Multifaceted Roles of STAT3 in the Heart , 2019, Front. Cardiovasc. Med..

[123]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[124]  J. P. Grossman,et al.  Anton, a special-purpose machine for molecular dynamics simulation , 2008, CACM.

[125]  C. Sasakawa,et al.  BabA-mediated Adherence Is a Potentiator of the Helicobacter pylori Type IV Secretion System Activity* , 2011, The Journal of Biological Chemistry.

[126]  J. Onuchic,et al.  Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations , 2006, Proceedings of the National Academy of Sciences.

[127]  W. L. Jorgensen,et al.  Structural investigation of 2‐naphthyl phenyl ether inhibitors bound to WT and Y181C reverse transcriptase highlights key features of the NNRTI binding site , 2020, Protein science : a publication of the Protein Society.

[128]  Amit K. Gupta,et al.  Multi‐target, ensemble‐based virtual screening yields novel allosteric KRAS inhibitors at high success rate , 2019, Chemical biology & drug design.

[129]  Ruth Nussinov,et al.  A Unified View of “How Allostery Works” , 2014, PLoS Comput. Biol..

[130]  A. Sali,et al.  Small-Molecule Allosteric Modulators of the Protein Kinase PDK1 from Structure-Based Docking. , 2015, Journal of medicinal chemistry.

[131]  T. Okuyama,et al.  The role of lipoxygenases in pathophysiology; new insights and future perspectives , 2015, Redox biology.

[132]  Igor N. Berezovsky,et al.  Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication , 2016, PLoS Comput. Biol..

[133]  T. Dinan,et al.  Exciting Times beyond the Brain: Metabotropic Glutamate Receptors in Peripheral and Non-Neural Tissues , 2011, Pharmacological Reviews.

[134]  Julian Tirado-Rives,et al.  Molecular modeling of organic and biomolecular systems using BOSS and MCPRO , 2005, J. Comput. Chem..

[135]  Jianfeng Pei,et al.  Binding site detection and druggability prediction of protein targets for structure-based drug design. , 2013, Current pharmaceutical design.

[136]  W. L. Jorgensen,et al.  Picomolar Inhibitors of HIV-1 Reverse Transcriptase: Design and Crystallography of Naphthyl Phenyl Ethers. , 2014, ACS medicinal chemistry letters.

[137]  Francesca Fanelli,et al.  WebPSN: a web server for high-throughput investigation of structural communication in biomacromolecules , 2015, Bioinform..

[138]  Joanna M. Sasin,et al.  Protein Tyrosine Phosphatases in the Human Genome , 2004, Cell.

[139]  B. Berne,et al.  Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. , 2008, Journal of the American Chemical Society.

[140]  Volkhard Helms,et al.  ALLO: A tool to discriminate and prioritize allosteric pockets , 2018, Chemical biology & drug design.

[141]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[142]  Albert C. Pan,et al.  Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor , 2012, Nature.

[143]  E. Wold,et al.  Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. , 2018, Journal of medicinal chemistry.

[144]  Silvio C. E. Tosatto,et al.  The RING 2.0 web server for high quality residue interaction networks , 2016, Nucleic Acids Res..

[145]  D. J. Schuller,et al.  The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase , 1995, Nature Structural Biology.

[146]  P. Zhan,et al.  The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. , 2018, Journal of medicinal chemistry.

[147]  J. Albert,et al.  Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. , 2017, Bioorganic & medicinal chemistry letters.

[148]  Pei Tang,et al.  Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor α1 for the treatment of pain. , 2015, Journal of medicinal chemistry.

[149]  A. Kolinski,et al.  Coarse-Grained Protein Models and Their Applications. , 2016, Chemical reviews.

[150]  Hans Bitter,et al.  The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1 , 2017, Nature.

[151]  I. Kuntz,et al.  DOCK 6: combining techniques to model RNA-small molecule complexes. , 2009, RNA.

[152]  M. Millan,et al.  Dopamine D3 receptor agonists for protection and repair in Parkinson's disease. , 2007, Current opinion in pharmacology.

[153]  Sangsoo Kim,et al.  Conformational flexibility in mammalian 15S‐lipoxygenase: Reinterpretation of the crystallographic data , 2008, Proteins.

[154]  V. Hilser,et al.  The ensemble nature of allostery , 2014, Nature.

[155]  M. Barahona,et al.  Prediction of allosteric sites and mediating interactions through bond-to-bond propensities , 2016, Nature Communications.

[156]  Paul Greengard,et al.  The Neurobiology of Dopamine Signaling , 2004 .

[157]  Y. Zou,et al.  Dopamine D3 receptor antagonist reveals a cryptic pocket in aminergic GPCRs , 2018, Scientific Reports.

[158]  Leela S. Dodda,et al.  Unbinding Dynamics of Non-Nucleoside Inhibitors from HIV-1 Reverse Transcriptase. , 2018, The journal of physical chemistry. B.

[159]  Oliver F. Lange,et al.  Generalized correlation for biomolecular dynamics , 2005, Proteins.

[160]  Khozirah Shaari,et al.  Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function , 2013, Proceedings of the National Academy of Sciences.

[161]  R. Nussinov,et al.  The different ways through which specificity works in orthosteric and allosteric drugs. , 2012, Current pharmaceutical design.

[162]  M Hendlich,et al.  LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. , 1997, Journal of molecular graphics & modelling.

[163]  E. Segala,et al.  Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A2A Receptor crystals , 2018, Scientific Reports.

[164]  Christopher L. McClendon,et al.  Synchronous opening and closing motions are essential for cAMP-dependent protein kinase A signaling. , 2014, Structure.

[165]  Shuai Li,et al.  ASD v3.0: unraveling allosteric regulation with structural mechanisms and biological networks , 2015, Nucleic Acids Res..

[166]  Woody Sherman,et al.  Use of an Induced Fit Receptor Structure in Virtual Screening , 2006, Chemical biology & drug design.

[167]  B. Blagg,et al.  Gambogic acid, a natural product inhibitor of Hsp90. , 2011, Journal of natural products.

[168]  Luhua Lai,et al.  Novel Allosteric Activators for Ferroptosis Regulator Glutathione Peroxidase 4. , 2019, Journal of medicinal chemistry.

[169]  B. Beno,et al.  Discovery of D1 Dopamine Receptor Positive Allosteric Modulators: Characterization of Pharmacology and Identification of Residues that Regulate Species Selectivity , 2015, The Journal of Pharmacology and Experimental Therapeutics.

[170]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[171]  Leo S. D. Caves,et al.  Bio3d: An R Package , 2022 .

[172]  J. Desai,et al.  The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity , 2019, Nature.

[173]  Gilles Marcou,et al.  Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints , 2007, J. Chem. Inf. Model..

[174]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[175]  Rommie E. Amaro,et al.  Emerging Computational Methods for the Rational Discovery of Allosteric Drugs , 2016, Chemical reviews.

[176]  J. Hengstler,et al.  Preclinical Efficacy of Covalent-Allosteric AKT Inhibitor Borussertib in Combination with Trametinib in KRAS-Mutant Pancreatic and Colorectal Cancer. , 2019, Cancer research.

[177]  Cecilia Gotti,et al.  Diversity of vertebrate nicotinic acetylcholine receptors , 2009, Neuropharmacology.

[178]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[179]  P. Sexton,et al.  Probe Dependence in the Allosteric Modulation of a G Protein-Coupled Receptor: Implications for Detection and Validation of Allosteric Ligand Effects , 2012, Molecular Pharmacology.

[180]  A. Carbone,et al.  “Infostery” analysis of short molecular dynamics simulations identifies highly sensitive residues and predicts deleterious mutations , 2018, Scientific Reports.

[181]  H. Carlson,et al.  An Allosteric Modulator of HIV-1 Protease Shows Equipotent Inhibition of Wild-Type and Drug-Resistant Proteases , 2014, Journal of medicinal chemistry.

[182]  Sean Wyatt,et al.  Novel class of pain drugs based on antagonism of NGF. , 2006, Trends in pharmacological sciences.

[183]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[184]  Turkan Haliloglu,et al.  MCPath: Monte Carlo path generation approach to predict likely allosteric pathways and functional residues , 2013, Nucleic Acids Res..

[185]  Thomas J Lane,et al.  MSMBuilder2: Modeling Conformational Dynamics at the Picosecond to Millisecond Scale. , 2011, Journal of chemical theory and computation.

[186]  Clifford J. Woolf,et al.  Complement Induction in Spinal Cord Microglia Results in Anaphylatoxin C5a-Mediated Pain Hypersensitivity , 2007, The Journal of Neuroscience.

[187]  Rebecca C Taylor,et al.  Apoptosis: controlled demolition at the cellular level , 2008, Nature Reviews Molecular Cell Biology.

[188]  Palaniyandi Ravanan,et al.  Identification of FDA-approved drugs as novel allosteric inhibitors of human executioner caspases , 2018, bioRxiv.

[189]  L. Lai,et al.  Discovery of Novel Allosteric Effectors Based on the Predicted Allosteric Sites for Escherichia coli D-3-Phosphoglycerate Dehydrogenase , 2014, PloS one.

[190]  Xin-Qiu Yao,et al.  Elucidating Allosteric Communications in Proteins with Difference Contact Network Analysis , 2018, J. Chem. Inf. Model..

[191]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[192]  L. Sticchi,et al.  Hepatitis C virus in the new era: perspectives in epidemiology, prevention, diagnostics and predictors of response to therapy. , 2014, World journal of gastroenterology.

[193]  P. Janning,et al.  Covalent-Allosteric Kinase Inhibitors. , 2015, Angewandte Chemie.

[194]  E. Zuiderweg,et al.  Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate , 2009, Proceedings of the National Academy of Sciences.

[195]  Hongchun Li,et al.  Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. , 2019, Current opinion in structural biology.

[196]  J Osipiuk,et al.  Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. , 1997, Structure.

[197]  Neal Rosen,et al.  Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism , 2016, Science.

[198]  Sarah L. Williams,et al.  Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor. , 2016, Journal of medicinal chemistry.

[199]  P. Ward,et al.  Role of C5a in inflammatory responses. , 2005, Annual review of immunology.

[200]  Sudhir Kumar,et al.  The Role of Conformational Dynamics and Allostery in Modulating Protein Evolution. , 2020, Annual review of biophysics.

[201]  Dima Kozakov,et al.  Exploring the structural origins of cryptic sites on proteins , 2018, Proceedings of the National Academy of Sciences.

[202]  Friedrich Rippmann,et al.  Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets. , 2016, Journal of chemical theory and computation.

[203]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[204]  John P. Overington,et al.  X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes , 1989, Nature.

[205]  D. Hazuda,et al.  Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. , 2008, Journal of medicinal chemistry.

[206]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[207]  Christian A. Söldner,et al.  A Metadynamics-Based Protocol for the Determination of GPCR-Ligand Binding Modes , 2019, International journal of molecular sciences.

[208]  Zhizhou Fang,et al.  Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. , 2013, ACS chemical biology.

[209]  Guang Hu,et al.  Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: theory, tools and applications , 2020, Briefings Bioinform..

[210]  Susan A. Jones,et al.  A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease , 2017, PLoS pathogens.

[211]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[212]  Luhua Lai,et al.  Motions of Allosteric and Orthosteric Ligand-Binding Sites in Proteins are Highly Correlated , 2016, J. Chem. Inf. Model..

[213]  L. Banaszak,et al.  Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. , 2005, Biochemistry.

[214]  David Komander,et al.  High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site , 2002, The EMBO journal.

[215]  Adrià Cereto-Massagué,et al.  DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets , 2012, Bioinform..

[216]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[217]  K A Johnson,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors , 1995, Science.

[218]  J R Porter,et al.  Enspara: Modeling molecular ensembles with scalable data structures and parallel computing , 2018, bioRxiv.

[219]  Yi Liu,et al.  Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. , 2016, Cancer discovery.

[220]  J. Mccammon,et al.  Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities , 2012, Proceedings of the National Academy of Sciences.

[221]  Yi Wang,et al.  Sirt6 regulates TNFα secretion via hydrolysis of long chain fatty acyl lysine , 2013, Nature.

[222]  S. Shimizu,et al.  Association Between Autophagy and Neurodegenerative Diseases , 2018, Front. Neurosci..

[223]  P. Sexton,et al.  A new mechanism of allostery in a G protein-coupled receptor dimer , 2014, Nature chemical biology.

[224]  R. Grimley,et al.  Discovery of Allosteric, Potent, Subtype Selective, and Peripherally Restricted TrkA Kinase Inhibitors. , 2019, Journal of medicinal chemistry.

[225]  U. Holzgrabe,et al.  Rational design of dualsteric GPCR ligands: quests and promise , 2010, British journal of pharmacology.

[226]  Peijun Zhang,et al.  Open-channel structures of the human glycine receptor α1 full-length transmembrane domain. , 2013, Structure.

[227]  Maulik R. Patel,et al.  Affinity Purification Probes of Potential Use To Investigate the Endogenous Hsp70 Interactome in Cancer , 2014, ACS chemical biology.

[228]  Roman Kityk,et al.  The novolactone natural product disrupts the allosteric regulation of Hsp70. , 2015, Chemistry & biology.

[229]  Maulik R. Patel,et al.  Heat Shock Protein 70 Inhibitors. 1. 2,5′-Thiodipyrimidine and 5-(Phenylthio)pyrimidine Acrylamides as Irreversible Binders to an Allosteric Site on Heat Shock Protein 70 , 2014, Journal of medicinal chemistry.

[230]  Kevan M. Shokat,et al.  Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. , 2017, Cell chemical biology.

[231]  Michael A. Patton,et al.  Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome , 2001, Nature Genetics.

[232]  Shaoyong Lu,et al.  ASBench: benchmarking sets for allosteric discovery , 2015, Bioinform..

[233]  W. L. Jorgensen,et al.  Molecular and cellular studies evaluating a potent 2-cyanoindolizine catechol diether NNRTI targeting wildtype and Y181C mutant HIV-1 reverse transcriptase. , 2019, Bioorganic & medicinal chemistry letters.

[234]  Cody J. Wenthur,et al.  Drugs for allosteric sites on receptors. , 2014, Annual review of pharmacology and toxicology.

[235]  Shaoyong Lu,et al.  Discovery of hidden allosteric sites as novel targets for allosteric drug design. , 2017, Drug discovery today.

[236]  R. Jernigan,et al.  Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites , 2019, Proteins.

[237]  Sarah L. Williams,et al.  6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors. , 2019, Journal of medicinal chemistry.

[238]  J Patrick Loria,et al.  Nanometer propagation of millisecond motions in V-type allostery. , 2010, Structure.

[239]  Rommie E. Amaro,et al.  Computational approaches to mapping allosteric pathways. , 2014, Current opinion in structural biology.

[240]  Oliver F. Lange,et al.  Full correlation analysis of conformational protein dynamics , 2007, Proteins.

[241]  Lazaros Mavridis,et al.  A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins , 2016, Molecular informatics.

[242]  S. Elmore Apoptosis: A Review of Programmed Cell Death , 2007, Toxicologic pathology.

[243]  D. Agard,et al.  Design of Allosteric Stimulators of the Hsp90 ATPase as New Anticancer Leads. , 2017, Chemistry.

[244]  Huan‐Xiang Zhou,et al.  Protein Allostery and Conformational Dynamics. , 2016, Chemical reviews.

[245]  Z. Cournia,et al.  Allostery in membrane proteins. , 2020, Current opinion in structural biology.

[246]  Ivan Rusyn,et al.  Mechanisms of HCV-induced liver cancer: what did we learn from in vitro and animal studies? , 2014, Cancer letters.

[247]  Francesca Fanelli,et al.  webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules , 2020, Nucleic Acids Res..

[248]  Andrew J. Woodhead,et al.  Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function , 2012, Nature chemical biology.

[249]  Nikolay V Dokholyan,et al.  Controlling Allosteric Networks in Proteins. , 2013, Chemical reviews.

[250]  T. Kenakin,et al.  G Protein-Coupled Receptor Allosterism and Complexing , 2002, Pharmacological Reviews.

[251]  F. Gervasio,et al.  Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH. , 2018, Journal of chemical theory and computation.

[252]  D. Goodsell,et al.  The Molecular Perspective: The ras Oncogene , 1999, Stem cells.

[253]  Shaoyong Lu,et al.  Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. , 2019, Journal of medicinal chemistry.

[254]  Helena G. Dos Santos,et al.  Predicted dynamical couplings of protein residues characterize catalysis, transport and allostery , 2019, Bioinform..

[255]  R. Nussinov,et al.  The origin of allosteric functional modulation: multiple pre-existing pathways. , 2009, Structure.

[256]  S. Srinivasula,et al.  Structural Basis of Caspase-7 Inhibition by XIAP , 2001, Cell.

[257]  Amr H. Mahmoud,et al.  A highly selective structure-based virtual screening model of Palm I allosteric inhibitors of HCV Ns5b polymerase enzyme and its application in the discovery and optimization of new analogues. , 2012, European journal of medicinal chemistry.

[258]  J A McCammon,et al.  Ordered water and ligand mobility in the HIV-1 integrase-5CITEP complex: a molecular dynamics study. , 2001, Journal of medicinal chemistry.

[259]  Petra Schneider,et al.  Virtual screening for compounds that mimic protein–protein interface epitopes , 2012, J. Comput. Chem..

[260]  Kimberly A. Reynolds,et al.  An evolution-based strategy for engineering allosteric regulation. , 2017, Physical biology.

[261]  C. Rice,et al.  Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication , 1993, Journal of virology.

[262]  Sally R. Ellingson,et al.  Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding? , 2019, The journal of physical chemistry. B.

[263]  M. Walkinshaw,et al.  Crystal structure of the C-terminal three-helix bundle subdomain of C. elegans Hsp70. , 2007, Biochemical and biophysical research communications.

[264]  David E. Gloriam,et al.  Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.

[265]  Massimiliano Bonomi,et al.  Metadynamics , 2019, ioChem-BD Computational Chemistry Datasets.

[266]  Christian Bohr,et al.  Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt1 , 1904 .

[267]  D. Hirschberg,et al.  Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. , 2009, Nature chemical biology.

[268]  Shaoyong Lu,et al.  AlloDriver: a method for the identification and analysis of cancer driver targets , 2019, Nucleic Acids Res..

[269]  Carlo Cavazzoni,et al.  Use of Experimental Design To Optimize Docking Performance: The Case of LiGenDock, the Docking Module of Ligen, a New De Novo Design Program , 2013, J. Chem. Inf. Model..

[270]  H. Bregman,et al.  Applications of parallel synthetic lead hopping and pharmacophore-based virtual screening in the discovery of efficient glycine receptor potentiators. , 2017, European journal of medicinal chemistry.

[271]  A. Kaczor,et al.  Molecular mechanisms of allosteric probe dependence in μ opioid receptor , 2019, Journal of biomolecular structure & dynamics.

[272]  Kiyoyuki Omoto,et al.  The Discovery of a Potent, Selective, and Peripherally Restricted Pan-Trk Inhibitor (PF-06273340) for the Treatment of Pain. , 2016, Journal of medicinal chemistry.

[273]  J. Changeux,et al.  Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation , 2016, Cell.

[274]  M. Gerstein,et al.  Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation. , 2016, Structure.

[275]  Priyanka Prakash,et al.  The Role of Conserved Waters in Conformational Transitions of Q61H K-ras , 2012, PLoS Comput. Biol..

[276]  Y. Li,et al.  Identification of a New Potent Inhibitor Targeting KRAS in Non-small Cell Lung Cancer Cells , 2017, Front. Pharmacol..

[277]  Alexander D. MacKerell,et al.  Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation , 2009, PLoS Comput. Biol..

[278]  Didier Rognan,et al.  Structure‐Based Discovery of Allosteric Modulators of Two Related Class B G‐Protein‐Coupled Receptors , 2011, ChemMedChem.

[279]  Shailesh N Mistry,et al.  Structure-activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2 receptor. , 2015, Journal of medicinal chemistry.

[280]  Matthew P Jacobson,et al.  Turning a protein kinase on or off from a single allosteric site via disulfide trapping , 2011, Proceedings of the National Academy of Sciences.

[281]  M. Topf,et al.  Diversity of Nicotinic Acetylcholine Receptor Positive Allosteric Modulators Revealed by Mutagenesis and a Revised Structural Model , 2018, Molecular Pharmacology.

[282]  Jan M. Kriegl,et al.  Self-organizing fuzzy graphs for structure-based comparison of protein pockets. , 2010, Journal of proteome research.

[283]  Chi‐Huey Wong,et al.  HIV-1 protease: mechanism and drug discovery. , 2003, Organic & biomolecular chemistry.

[284]  Ruben Abagyan,et al.  Ligand-guided receptor optimization. , 2012, Methods in molecular biology.

[285]  Shailesh N Mistry,et al.  A Thieno[2,3- d]pyrimidine Scaffold Is a Novel Negative Allosteric Modulator of the Dopamine D2 Receptor. , 2019, Journal of Medicinal Chemistry.

[286]  N. Vaidehi,et al.  Differences in allosteric communication pipelines in the inactive and active states of a GPCR. , 2014, Biophysical journal.

[287]  Julien Michel,et al.  A Collective Variable for the Rapid Exploration of Protein Druggability. , 2015, Journal of chemical theory and computation.

[288]  Jianrong Xu,et al.  AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses , 2018, Nucleic Acids Res..

[289]  Ajay N. Jain Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search , 2007, J. Comput. Aided Mol. Des..

[290]  S. P. Andrews,et al.  Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor , 2013 .

[291]  J. Licht,et al.  Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia , 2003, Nature Genetics.

[292]  David Schaller,et al.  Next generation 3D pharmacophore modeling , 2020, WIREs Computational Molecular Science.

[293]  Dima Kozakov,et al.  FTMAP: extended protein mapping with user-selected probe molecules , 2012, Nucleic Acids Res..

[294]  Shaoyong Lu,et al.  Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug-Target Interactions. , 2018, Journal of medicinal chemistry.

[295]  Mahmoud ElHefnawi,et al.  Multiple virtual screening approaches for finding new Hepatitis c virus RNA-dependent RNA polymerase inhibitors: Structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors , 2012, BMC Bioinformatics.

[296]  Ulrike Holzgrabe,et al.  Molecular alliance-from orthosteric and allosteric ligands to dualsteric/bitopic agonists at G protein coupled receptors. , 2013, Angewandte Chemie.

[297]  J. A. Grant,et al.  A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. , 2005, Journal of medicinal chemistry.

[298]  Timothy Clark,et al.  An Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands , 2017, J. Chem. Inf. Model..

[299]  Qi Wang,et al.  Toward understanding the molecular basis for chemical allosteric modulator design. , 2012, Journal of Molecular Graphics and Modelling.

[300]  Thomas Sander,et al.  DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis , 2015, J. Chem. Inf. Model..

[301]  Weilin Zhang,et al.  CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction , 2018, Nucleic Acids Res..

[302]  Benjamin D. Sellers,et al.  Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design. , 2016, Journal of medicinal chemistry.

[303]  Christian F. A. Negre,et al.  Eigenvector centrality for characterization of protein allosteric pathways , 2017, Proceedings of the National Academy of Sciences.

[304]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[305]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[306]  M. Lin Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery. , 2016, Journal of the American Chemical Society.

[307]  J. Wess,et al.  Activation and allosteric modulation of a muscarinic acetylcholine receptor , 2013, Nature.

[308]  Ying Ma,et al.  Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics , 2018, Comput. Biol. Chem..

[309]  Gürol M. Süel,et al.  Evolutionarily conserved networks of residues mediate allosteric communication in proteins , 2003, Nature Structural Biology.

[310]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[311]  Simon Mitternacht,et al.  SPACER: server for predicting allosteric communication and effects of regulation , 2013, Nucleic Acids Res..

[312]  S. Moro,et al.  Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. , 2015, Bioorganic & medicinal chemistry.

[313]  L. Pearl,et al.  Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex , 2006, Nature.

[314]  Ivet Bahar,et al.  DynOmics: dynamics of structural proteome and beyond , 2017, Nucleic Acids Res..

[315]  Drug Design Strategies for GPCR Allosteric Modulators. , 2012, Annual reports in medicinal chemistry.

[316]  J. Wells,et al.  Searching for new allosteric sites in enzymes. , 2004, Current opinion in structural biology.

[317]  R. Friesner,et al.  Novel procedure for modeling ligand/receptor induced fit effects. , 2006, Journal of medicinal chemistry.

[318]  Dimitar V. Pachov,et al.  Free energy landscape of activation in a signaling protein at atomic resolution , 2015, Nature Communications.

[319]  A. Cavalli,et al.  Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms. , 2015, Accounts of chemical research.

[320]  Lionel Colliandre,et al.  e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design , 2012, Bioinform..

[321]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[322]  D. Manstein,et al.  Inhibition of Myosin ATPase activity by halogenated pseudilins: a structure-activity study. , 2011, Journal of medicinal chemistry.

[323]  Yuko Tsuchiya,et al.  Autoencoder-Based Detection of Dynamic Allostery Triggered by Ligand Binding Based on Molecular Dynamics , 2019, J. Chem. Inf. Model..

[324]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[325]  Significance of triple torsional correlations in proteins , 2019, RSC Advances.

[326]  M. Karplus,et al.  Allostery and cooperativity revisited , 2008, Protein science : a publication of the Protein Society.

[327]  B. Honig,et al.  A hierarchical approach to all‐atom protein loop prediction , 2004, Proteins.

[328]  Anat Levit,et al.  STRUCTURE OF THE D2 DOPAMINE RECEPTOR BOUND TO THE ATYPICAL ANTIPSYCHOTIC DRUG RISPERIDONE , 2018, Nature.

[329]  M. Jaskólski,et al.  Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. , 1989, Science.

[330]  Zheng Yin,et al.  Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus , 2006, Nature Structural &Molecular Biology.

[331]  James O. Wrabl,et al.  Structural and energetic basis of allostery. , 2012, Annual review of biophysics.

[332]  S. Olsen,et al.  Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme , 2018, Nature Communications.

[333]  J. Wess,et al.  Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. , 2004, Annual review of pharmacology and toxicology.

[334]  W. L. Jorgensen,et al.  Design, Conformation, and Crystallography of 2-Naphthyl Phenyl Ethers as Potent Anti-HIV Agents. , 2016, ACS medicinal chemistry letters.

[335]  T. Kenakin Allosteric Drug Effects , 2017 .

[336]  D. Sejer Pedersen,et al.  Bitopic Ligands and Metastable Binding Sites: Opportunities for G Protein-Coupled Receptor (GPCR) Medicinal Chemistry. , 2017, Journal of medicinal chemistry.

[337]  P. Sexton,et al.  The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. , 2012, Annual review of pharmacology and toxicology.

[338]  L. Greenfield,et al.  Molecular mechanisms of antiseizure drug activity at GABAA receptors , 2013, Seizure.

[339]  T. Schwartz,et al.  Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act? , 2007, Trends in pharmacological sciences.

[340]  Heather A Carlson,et al.  Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems. , 2016, The journal of physical chemistry. B.

[341]  Sarah L. Williams,et al.  Dual Allosteric Inhibition of SHP2 Phosphatase. , 2018, ACS chemical biology.

[342]  J. Dixon,et al.  Protein tyrosine phosphatases: mechanisms of catalysis and regulation. , 1998, Current opinion in chemical biology.

[343]  Jae K. Lee,et al.  Mining and Visualizing Large Anticancer Drug Discovery Databases , 2000, J. Chem. Inf. Comput. Sci..

[344]  F. J. Luque,et al.  Binding site detection and druggability index from first principles. , 2009, Journal of medicinal chemistry.

[345]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[346]  Julie C. Mitchell,et al.  CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites. , 2016, Journal of molecular biology.

[347]  J. Wells,et al.  Discovery of an allosteric site in the caspases. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[348]  Kimberly A. Reynolds,et al.  Hot Spots for Allosteric Regulation on Protein Surfaces , 2011, Cell.

[349]  Roland Seifert,et al.  Faculty Opinions recommendation of K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. , 2013 .

[350]  S. Cremers,et al.  Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis , 2011, Nature Reviews Rheumatology.

[351]  V. Pande,et al.  Markov State Models: From an Art to a Science. , 2018, Journal of the American Chemical Society.

[352]  Julie C. Mitchell,et al.  Structure-Based Predictive Models for Allosteric Hot Spots , 2009, PLoS Comput. Biol..

[353]  P. Sexton,et al.  Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. , 2007, Trends in pharmacological sciences.

[354]  William J. Allen,et al.  DOCK 6: Impact of new features and current docking performance , 2015, J. Comput. Chem..

[355]  Michel Dumontier,et al.  The emergence and evolution of the research fronts in HIV/AIDS research , 2016, PloS one.

[356]  R. Altman,et al.  Predicting allosteric communication in myosin via a pathway of conserved residues. , 2007, Journal of molecular biology.

[357]  H. Dyson,et al.  Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway , 2015, Journal of the American Chemical Society.

[358]  Shouyi Wang,et al.  Probing Protein Allostery as a Residue-Specific Concept via Residue Response Maps , 2019, J. Chem. Inf. Model..

[359]  A. Kruse,et al.  Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist , 2011, Nature.

[360]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[361]  Ping Zhu,et al.  Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases , 2016, Nature.

[362]  Sarah L. Williams,et al.  Optimization of Fused Bicyclic Allosteric SHP2 Inhibitors. , 2019, Journal of medicinal chemistry.

[363]  Thierry Langer,et al.  LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters , 2005, J. Chem. Inf. Model..

[364]  A. Christopoulos Allosteric binding sites on cell-surface receptors: novel targets for drug discovery , 2002, Nature Reviews Drug Discovery.

[365]  A. Hall,et al.  Novel Strategies To Activate the Dopamine D1 Receptor: Recent Advances in Orthosteric Agonism and Positive Allosteric Modulation. , 2018, Journal of medicinal chemistry.

[366]  Keisuke Kuida,et al.  Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis , 2006, Science.

[367]  Xin-Qiu Yao,et al.  Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis. , 2019, Accounts of chemical research.

[368]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[369]  Brian K Shoichet,et al.  Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. , 2002, Journal of molecular biology.

[370]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[371]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[372]  Vincent Le Guilloux,et al.  Fpocket: An open source platform for ligand pocket detection , 2009, BMC Bioinformatics.

[373]  Igor N. Berezovsky,et al.  AlloSigMA: allosteric signaling and mutation analysis server , 2017, Bioinform..

[374]  R. Stevens,et al.  How Ligands Illuminate GPCR Molecular Pharmacology , 2017, Cell.

[375]  Antonella Ciancetta,et al.  Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. , 2018, Methods in molecular biology.

[376]  Ruben Abagyan,et al.  Structure-Based Ligand Discovery Targeting Orthosteric and Allosteric Pockets of Dopamine Receptors , 2013, Molecular Pharmacology.

[377]  I. Mellman,et al.  Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity , 2012, Proceedings of the National Academy of Sciences.

[378]  Giorgio Colombo,et al.  Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer , 2009, PLoS Comput. Biol..

[379]  Klaus Schulten,et al.  Implementation of Accelerated Molecular Dynamics in NAMD. , 2011, Computational science & discovery.

[380]  Rommie E. Amaro,et al.  Allostery through the computational microscope: cAMP activation of a canonical signaling domain , 2015, Nature Communications.

[381]  Andrej Sali,et al.  Structure-based model of allostery predicts coupling between distant sites , 2012, Proceedings of the National Academy of Sciences.

[382]  Hualiang Jiang,et al.  Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex , 2013, Science.

[383]  Z. Luthey-Schulten,et al.  Dynamical networks in tRNA:protein complexes , 2009, Proceedings of the National Academy of Sciences.

[384]  Ora Schueler-Furman,et al.  Computational approaches to investigating allostery. , 2016, Current opinion in structural biology.

[385]  E. De Clercq,et al.  Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years , 2019, Acta pharmaceutica Sinica. B.

[386]  I. Kügelgen,et al.  Pharmacology and structure of P2Y receptors , 2016, Neuropharmacology.

[387]  Pemra Ozbek,et al.  ProSNEx: a web-based application for exploration and analysis of protein structures using network formalism , 2019, Nucleic Acids Res..

[388]  Romain M. Wolf,et al.  Proton-sensing G-protein-coupled receptors , 2003, Nature.

[389]  Maria F. Sassano,et al.  Discovery of β-Arrestin–Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy , 2011, Proceedings of the National Academy of Sciences.

[390]  C. Ramos,et al.  Protein folding assisted by chaperones. , 2005, Protein and peptide letters.

[391]  Shaoyong Lu,et al.  Improved Method for the Identification and Validation of Allosteric Sites , 2017, J. Chem. Inf. Model..

[392]  T. Kenakin Biased signalling and allosteric machines: new vistas and challenges for drug discovery , 2012, British journal of pharmacology.

[393]  Haikuo Zhang,et al.  Overcoming EGFR T790M and C797S resistance with mutant-selective allosteric inhibitors , 2016 .

[394]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[395]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[396]  Ashutosh Kumar Singh,et al.  Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 , 2016, Lancet.

[397]  Igor N. Berezovsky,et al.  Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response , 2018, PLoS Comput. Biol..

[398]  Alexander D. MacKerell,et al.  Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors , 2015, J. Chem. Inf. Model..

[399]  William L. Jorgensen,et al.  Discovery of Wild-Type and Y181C Mutant Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors Using Virtual Screening with Multiple Protein Structures , 2009, J. Chem. Inf. Model..

[400]  G. Bowman,et al.  Quantifying Allosteric Communication via Both Concerted Structural Changes and Conformational Disorder with CARDS. , 2017, Journal of chemical theory and computation.

[401]  Rama Ranganathan,et al.  A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods , 2014, Nature Communications.

[402]  J. Andrew McCammon,et al.  Method for Including the Dynamic Fluctuations of a Protein in Computer-Aided Drug Design , 1999 .

[403]  Qingyi Yang,et al.  Building alternate protein structures using the elastic network model , 2009, Proteins.

[404]  V. Hilser,et al.  Agonism/antagonism switching in allosteric ensembles , 2012, Proceedings of the National Academy of Sciences.

[405]  David L Mobley,et al.  Quantifying Correlations Between Allosteric Sites in Thermodynamic Ensembles. , 2009, Journal of chemical theory and computation.

[406]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[407]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[408]  R. Nussinov,et al.  Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. , 2016, Chemical reviews.

[409]  J. Lynch,et al.  Native glycine receptor subtypes and their physiological roles , 2009, Neuropharmacology.

[410]  Yi Isaac Yang,et al.  Enhanced sampling in molecular dynamics. , 2019, The Journal of chemical physics.

[411]  Y. Martin,et al.  3D database searching in drug design. , 1992, Journal of medicinal chemistry.

[412]  Ge Zhang,et al.  Cathepsin K: The Action in and Beyond Bone , 2020, Frontiers in Cell and Developmental Biology.

[413]  Susan S. Taylor,et al.  2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. , 1993, Acta crystallographica. Section D, Biological crystallography.

[414]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[415]  Jean-Pierre Changeux,et al.  The Glycine Receptor Allosteric Ligands Library (GRALL) , 2020, Bioinform..

[416]  Harel Weinstein,et al.  NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT , 2014, PLoS Comput. Biol..

[417]  Matthew P. Repasky,et al.  WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking. , 2016, Journal of medicinal chemistry.

[418]  David S Palmer,et al.  Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics , 2020, J. Chem. Inf. Model..

[419]  Robert Abel,et al.  Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding , 2007, Proceedings of the National Academy of Sciences.

[420]  A. Hill,et al.  The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves , 1910 .

[421]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[422]  R. Nussinov,et al.  Allostery and population shift in drug discovery. , 2010, Current opinion in pharmacology.

[423]  Francesc Sabanés Zariquiey,et al.  Cosolvent Analysis Toolkit (CAT): a robust hotspot identification platform for cosolvent simulations of proteins to expand the druggable proteome , 2019, Scientific Reports.

[424]  Hege S. Beard,et al.  Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. , 2004, Journal of medicinal chemistry.

[425]  H. de Vries,et al.  Synthesis and biological evaluation of chemokine receptor ligands with 2-benzazepine scaffold. , 2017, European journal of medicinal chemistry.

[426]  Qiang Wang,et al.  ErbB receptors: from oncogenes to targeted cancer therapies. , 2007, The Journal of clinical investigation.

[427]  Igor N. Berezovsky,et al.  AlloMAPS: allosteric mutation analysis and polymorphism of signaling database , 2018, Nucleic Acids Res..

[428]  J. McMurray,et al.  Crystal structure of unphosphorylated STAT3 core fragment. , 2008, Biochemical and biophysical research communications.

[429]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.

[430]  R. Huber,et al.  HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues , 2010, Nature Structural &Molecular Biology.

[431]  Wei-Hsin Sun,et al.  Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors , 2007, Molecular and Cellular Neuroscience.

[432]  M. Topf,et al.  Identification by virtual screening and functional characterisation of novel positive and negative allosteric modulators of the α7 nicotinic acetylcholine receptor , 2018, Neuropharmacology.

[433]  J. Changeux Allostery and the Monod-Wyman-Changeux model after 50 years. , 2012, Annual review of biophysics.

[434]  Arthur Christopoulos,et al.  A Novel Mechanism of G Protein-coupled Receptor Functional Selectivity , 2008, Journal of Biological Chemistry.

[435]  Najeeb M. Halabi,et al.  Protein Sectors: Evolutionary Units of Three-Dimensional Structure , 2009, Cell.

[436]  Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses , 2014, Cancer and Metastasis Reviews.

[437]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[438]  T. Woodruff,et al.  Role of complement C5a in mechanical inflammatory hypernociception: potential use of C5a receptor antagonists to control inflammatory pain , 2008, British journal of pharmacology.

[439]  F. Gervasio,et al.  Unravelling the effect of the E545K mutation on PI3Kα kinase , 2020, Chemical science.

[440]  J. Changeux,et al.  X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel , 2011, Nature.

[441]  A. Venkatesan,et al.  Review on chemogenomic approaches towards hepatitis C viral targets , 2019, Journal of cellular biochemistry.

[442]  Andrew S Doré,et al.  Towards high throughput GPCR crystallography: In Meso soaking of Adenosine A2A Receptor crystals , 2018, Scientific Reports.

[443]  X. Barril,et al.  Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. , 2014, Journal of medicinal chemistry.

[444]  Ugo Bastolla,et al.  Torsional network model: normal modes in torsion angle space better correlate with conformation changes in proteins. , 2010, Physical review letters.

[445]  Jan M. Kriegl,et al.  Architectural Repertoire of Ligand‐Binding Pockets on Protein Surfaces , 2010, Chembiochem : a European journal of chemical biology.

[446]  David P. Roberson,et al.  Breaking barriers to novel analgesic drug development , 2017, Nature Reviews Drug Discovery.

[447]  B. Kellam,et al.  Drug-like Antagonists of P2Y Receptors-From Lead Identification to Drug Development. , 2016, Journal of medicinal chemistry.

[448]  Kevan M. Shokat,et al.  K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions , 2013, Nature.

[449]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[450]  Dima Kozakov,et al.  The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins , 2015, Nature Protocols.

[451]  C. Supuran,et al.  The Possible Role of Helicobacter pylori in Gastric Cancer and Its Management , 2019, Front. Oncol..

[452]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[453]  Alexander D. MacKerell,et al.  Estimation of relative free energies of binding using pre‐computed ensembles based on the single‐step free energy perturbation and the site‐identification by Ligand competitive saturation approaches , 2017, J. Comput. Chem..

[454]  Pietro Ghezzi,et al.  Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[455]  Ruth Nussinov,et al.  Allostery in Its Many Disguises: From Theory to Applications. , 2019, Structure.

[456]  Arthur Christopoulos,et al.  Emerging paradigms in GPCR allostery: implications for drug discovery , 2013, Nature Reviews Drug Discovery.

[457]  M. Teixeira,et al.  Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief , 2014, Proceedings of the National Academy of Sciences.

[458]  L. Lai,et al.  Singular value decomposition for the correlation of atomic fluctuations with arbitrary angle , 2018, Proteins.

[459]  T. Langer,et al.  Design, Synthesis, and Pharmacological Evaluation of Novel β2/3 Subunit-Selective γ-Aminobutyric Acid Type A (GABAA) Receptor Modulators. , 2018, Journal of medicinal chemistry.

[460]  Harrison J. Hocker,et al.  Novel Allosteric Sites on Ras for Lead Generation , 2011, PloS one.

[461]  Tad Hurst,et al.  Flexible 3D searching: The directed tweak technique , 1994, J. Chem. Inf. Comput. Sci..

[462]  D. Koshland,et al.  Comparison of experimental binding data and theoretical models in proteins containing subunits. , 1966, Biochemistry.

[463]  U. Kelavkar,et al.  Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[464]  James R Horn,et al.  Allosteric inhibition through core disruption. , 2004, Journal of molecular biology.

[465]  X. Daura,et al.  Assessing the structural conservation of protein pockets to study functional and allosteric sites: implications for drug discovery , 2010, BMC Structural Biology.

[466]  R. Kozak,et al.  Discovery and Lead Optimization of Atropisomer D1 Agonists with Reduced Desensitization. , 2018, Journal of medicinal chemistry.

[467]  Hualiang Jiang,et al.  Structure of the full-length glucagon class B G protein-coupled receptor , 2017, Nature.

[468]  Matthew E. Welsch,et al.  Regulation of Ferroptotic Cancer Cell Death by GPX4 , 2014, Cell.

[469]  Z. Cournia,et al.  Exploring a non-ATP pocket for potential allosteric modulation of PI3Kα. , 2015, The journal of physical chemistry. B.

[470]  Shuai Li,et al.  ASD v2.0: updated content and novel features focusing on allosteric regulation , 2013, Nucleic Acids Res..

[471]  Xin Chen,et al.  Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65 , 2015, Nature.

[472]  A. Laio,et al.  Flexible docking in solution using metadynamics. , 2005, Journal of the American Chemical Society.

[473]  Tom Halgren,et al.  New Method for Fast and Accurate Binding‐site Identification and Analysis , 2007, Chemical biology & drug design.

[474]  G. Bowman,et al.  Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites , 2012, Proceedings of the National Academy of Sciences.

[475]  P. Shi,et al.  Ligand-Bound Structures of the Dengue Virus Protease Reveal the Active Conformation , 2011, Journal of Virology.

[476]  Carlo Cavazzoni,et al.  LiGen: A High Performance Workflow for Chemistry Driven de Novo Design , 2013, J. Chem. Inf. Model..

[477]  L. Lai,et al.  Correlation Between Allosteric and Orthosteric Sites. , 2019, Advances in experimental medicine and biology.

[478]  Benjamin P. Cossins,et al.  Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations. , 2016, Journal of the American Chemical Society.

[479]  Geng Wu,et al.  ASD: a comprehensive database of allosteric proteins and modulators , 2010, Nucleic Acids Res..

[480]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[481]  P. Scheerer,et al.  Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). , 2007, Biochemistry.

[482]  David E. Gloriam,et al.  Pharmacogenomics of GPCR Drug Targets , 2018, Cell.

[483]  J Andrew McCammon,et al.  Discovery of a novel binding trench in HIV integrase. , 2004, Journal of medicinal chemistry.

[484]  Thomas Lengauer,et al.  FlexE: efficient molecular docking considering protein structure variations. , 2001, Journal of molecular biology.

[485]  C. Lindsley,et al.  Orthosteric- and allosteric-induced ligand-directed trafficking at GPCRs. , 2010, Current opinion in drug discovery & development.

[486]  Maulik R. Patel,et al.  Heat Shock Protein 70 Inhibitors. 2. 2,5′-Thiodipyrimidines, 5-(Phenylthio)pyrimidines, 2-(Pyridin-3-ylthio)pyrimidines, and 3-(Phenylthio)pyridines as Reversible Binders to an Allosteric Site on Heat Shock Protein 70 , 2014, Journal of medicinal chemistry.

[487]  T. Schwartz,et al.  Ago-Allosteric Modulation and Other Types of Allostery in Dimeric 7TM Receptors , 2006, Journal of receptor and signal transduction research.

[488]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[489]  Glen M. Hocky,et al.  Residue-Level Allostery Propagates Through the Effective Coarse-Grained Hessian. , 2020, Journal of chemical theory and computation.

[490]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[491]  Katrin F. Chua,et al.  SIRT6: Novel Mechanisms and Links to Aging and Disease , 2017, Trends in Endocrinology & Metabolism.

[492]  K. Huber,et al.  Mechanism of allosteric inhibition of HIV-1 reverse transcriptase revealed by single-molecule and ensemble fluorescence , 2014, Nucleic acids research.

[493]  Rommie E. Amaro,et al.  Ensemble Docking in Drug Discovery. , 2018, Biophysical journal.

[494]  Sameer Varma,et al.  Machine learning approaches to evaluate correlation patterns in allosteric signaling: A case study of the PDZ2 domain. , 2018, The Journal of chemical physics.

[495]  I. M. Klotz,et al.  The application of the law of mass action to binding by proteins; interactions with calcium. , 1946, Archives of biochemistry.

[496]  Dima Kozakov,et al.  Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques , 2009, Bioinform..

[497]  Hongmin Li,et al.  The flavivirus protease as a target for drug discovery , 2013, Virologica Sinica.