QUANTUM ESTIMATION THEORY AND OPTICAL DETECTION

In quantum mechanics we call “observable” any physical quantity that can be represented by numbers. An observable is associated in a one-to-one way with a selfadjoint operator \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{X} \) acting on the Hilbert space H S of the quantum system S, and the spectrum of \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{X} \) represents the set of all possible readings from the measurement. Let us consider, for example, an observable with spectrum equal to whole real line R, and with spectral decomposition $$ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{X} = \int {xd\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{E} (x)} $$ (1) .

[1]  L. Mandel Fluctuations of Photon Beams and their Correlations , 1958 .

[2]  Carl W. Helstrom,et al.  Estimation of a displacement parameter of a quantum system , 1974 .

[3]  B. Lax,et al.  Physics of quantum electronics , 1965 .

[4]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[5]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[6]  Roland Omnès The Interpretation of Quantum Mechanics , 1987 .

[7]  H. Carmichael An open systems approach to quantum optics , 1993 .

[8]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[9]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[10]  L. Mandel Fluctuations of Photon Beams: The Distribution of the Photo-Electrons , 1959 .

[11]  Günther Ludwig Foundations of quantum mechanics , 1983 .

[12]  SU(1,1) symmetry of the balanced homodyne and statistics of the output , 1992 .

[13]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[14]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[15]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part II: Photoemissive detection and structured receiver performance , 1979, IEEE Trans. Inf. Theory.

[16]  C. Helstrom “Simultaneous measurement” from the standpoint of quantum estimation theory , 1974 .

[17]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[18]  H. Yuen Generalized quantum measurements and approximate simultaneous measurements of noncommuting observables , 1982 .

[19]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.

[20]  Giacomo Mauro D'Ariano,et al.  NUMBER-PHASE SQUEEZED STATES AND PHOTON FRACTIONING , 1992 .

[21]  E. B. Davies Quantum theory of open systems , 1976 .

[22]  G. D’Ariano,et al.  Lower bounds on phase sensitivity in ideal and feasible measurements. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[23]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[24]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[25]  S. Gudder Review: A. S. Holevo, Probabilistic and statistical aspects of quantum theory , 1985 .

[26]  Max Born,et al.  THE INTERPRETATION OF QUANTUM MECHANICS* , 1953, The British Journal for the Philosophy of Science.

[27]  Goodman,et al.  Quantum correlations: A generalized Heisenberg uncertainty relation. , 1988, Physical review letters.

[28]  Giacomo Mauro D'Ariano,et al.  Measuring Quantum States , 1997 .