DNA origami nanopores for controlling DNA translocation.

We combine DNA origami structures with glass nanocapillaries to reversibly form hybrid DNA origami nanopores. Trapping of the DNA origami onto the nanocapillary is proven by imaging fluorescently labeled DNA origami structures and simultaneous ionic current measurements of the trapping events. We then show two applications highlighting the versatility of these DNA origami nanopores. First, by tuning the pore size we can control the folding of dsDNA molecules ("physical control"). Second, we show that the specific introduction of binding sites in the DNA origami nanopore allows selective detection of ssDNA as a function of the DNA sequence ("chemical control").

[1]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[2]  Cees Dekker,et al.  Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. , 2010, Nature nanotechnology.

[3]  D. Sept,et al.  Single-particle characterization of Aβ oligomers in solution. , 2012, ACS nano.

[4]  I. Willner,et al.  DNA origami: Nanorobots grab cellular control. , 2012, Nature materials.

[5]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[6]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[7]  Juhyoun Kwak,et al.  Ion-beam sculpting at nanometre length scales , 2001 .

[8]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[9]  Masayuki Endo,et al.  A versatile DNA nanochip for direct analysis of DNA base-excision repair. , 2010, Angewandte Chemie.

[10]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[11]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[12]  Sheereen Majd,et al.  Controlling protein translocation through nanopores with bio-inspired fluid walls , 2011 .

[13]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[14]  Ulrich F Keyser,et al.  Detecting DNA folding with nanocapillaries. , 2010, Nano letters.

[15]  Tim Liedl,et al.  Multiplexed ionic current sensing with glass nanopores. , 2013, Lab on a chip.

[16]  Tim Liedl,et al.  DNA Origami Nanopores , 2013 .

[17]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[18]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[19]  L. A. Baker,et al.  Applications of nanopipettes in the analytical sciences. , 2010, The Analyst.

[20]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[21]  I. Bachelet DNA Origami Nanorobots , 2014 .

[22]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[23]  T. Ha,et al.  Single-molecule high-resolution imaging with photobleaching. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[25]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[26]  Vivek V. Thacker,et al.  Studying DNA translocation in nanocapillaries using single molecule fluorescence. , 2012, Applied physics letters.

[27]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[28]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[29]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[30]  U. Keyser,et al.  Optimizing Diffusive Transport Through a Synthetic Membrane Channel , 2012, Advanced materials.

[31]  Akinori Kuzuya,et al.  Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer‐Scale Wells Embedded in DNA Origami Assembly , 2009, Chembiochem : a European journal of chemical biology.

[32]  Vivek V. Thacker,et al.  Lipid-coated nanocapillaries for DNA sensing. , 2013, The Analyst.

[33]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.