Loops, Latin Squares and Strongly Regular Graphs: An Algorithmic Approach via Algebraic Combinatorics
暂无分享,去创建一个
[1] G. Mullen,et al. Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.
[2] Jonathan D. H. Smith,et al. Post-Modern Algebra: Smith/Post-Modern , 1999 .
[3] Mikhail E. Muzychuk,et al. Some Implications on Amorphic Association Schemes , 2010, J. Comb. Theory, Ser. A.
[4] A. Neumaier,et al. Distance Regular Graphs , 1989 .
[5] B. McKay,et al. Small latin squares, quasigroups, and loops , 2007 .
[6] L. Babai. Automorphism groups, isomorphism, reconstruction , 1996 .
[7] Sherman K. Stein,et al. Cycles in algebraic systems , 1956 .
[8] Karl Strambach,et al. The geometry of binary systems , 1983 .
[9] Alexander A. Ivanov,et al. Investigations in Algebraic Theory of Combinatorial Objects , 1994 .
[10] S. Shrikhande. The uniqueness of the L_2 association scheme , 1958 .
[11] Ian M. Wanless,et al. On the Number of Latin Squares , 2005, 0909.2101.
[12] Mikhail H. Klin,et al. Switching of Edges in Strongly Regular Graphs I: A Family of Partial Difference Sets on 100 Vertices , 2003, Electron. J. Comb..
[13] Hanfried Lenz,et al. Design theory , 1985 .
[14] M. Klin,et al. Cellular Rings and Groups of Automorphisms of Graphs , 1994 .
[15] On 2-transitive 3-nets , 1991 .
[16] Kenneth Kunen. G-Loops and Permutation Groups☆ , 1999 .
[17] W. Haemers,et al. Association schemes , 1996 .
[18] A. V. Ivanov,et al. Amorphic Cellular Rings , 1994 .
[19] René Peeters. Uniqueness of strongly regular graphs having minimal p-rank , 1995 .
[20] Erich Schönhardt. Über lateinische Quadrate und Unionen. , 1930 .
[21] A.-A. A. Jucys,et al. The Number of Distinct Latin Squares as a Group-Theoretical Constant , 1976, J. Comb. Theory, Ser. A.
[22] E. G. Goodaire,et al. A Class of Loops Which are Isomorphic to all Loop Isotopes , 1982, Canadian Journal of Mathematics.
[23] E. L. Wilson. A Class of Loops with the Isotopy-Isomorphy Property , 1966, Canadian Journal of Mathematics.
[24] D. R. Hughes. Design Theory , 1985 .
[25] K. Phelps. Automorphism free latin square graphs , 1980, Discret. Math..
[26] G. Eric Moorhouse. Bruck nets, codes, and characters of loops , 1991, Des. Codes Cryptogr..
[27] K. Strambach,et al. Loops as Invariant Sections in Groups, and their Geometry , 1994, Canadian Journal of Mathematics.
[28] D. Jungnickel. Latin squares, their geometries and their groups. A survey , 1990 .
[29] Arthur Cayley. The Collected Mathematical Papers: On Latin squares , 2009 .
[30] R. A. Bailey,et al. Strata for Randomized Experiments , 1991 .
[31] K. Kunen. The structure of conjugacy closed loops , 2000 .
[32] Dieter Jungnickel,et al. Translation nets: a survey , 1992, Discret. Math..
[33] M. Klin,et al. The isomorphism problem for circulant graphs via Schur ring theory , 1999, Codes and Association Schemes.
[34] Edward Dobson,et al. Some Non-Normal Cayley Digraphs of the Generalized Quaternion Group of Certain Orders , 2003, Electron. J. Comb..
[35] Mikhail H. Klin,et al. For computations with coherent configurations , 1991, ISSAC '91.
[36] D. Jungnickel. Existence results for translation nets, II , 1989 .
[37] R. H. Bruck. Finite Nets, I. Numerical Invariants , 1951, Canadian Journal of Mathematics.
[38] B. Weisfeiler. On construction and identification of graphs , 1976 .
[39] Donald Keedwell. Decompositions of Complete Graphs Defined by Quasigroups , 1982 .
[40] Alice Devillers,et al. Rank 3 Latin square designs , 2006, J. Comb. Theory, Ser. A.
[41] T. Bier,et al. Numerical invariants of strongly regular graphs , 1988, J. Comb. Theory, Ser. A.
[42] R. A. Bailey. Orthogonal partitions in designed experiments , 1996 .
[43] H. Wielandt,et al. Finite Permutation Groups , 1964 .
[44] S. S. Shrikhande,et al. The Uniqueness of the $\mathrm{L}_2$ Association Scheme , 1959 .
[45] R. A. Bailey,et al. Translation nets and fixed-point-free group automorphisms , 1990, J. Comb. Theory A.
[46] R. H. Bruck. Finite nets. II. Uniqueness and imbedding. , 1963 .
[47] J. Dénes,et al. Latin squares and their applications , 1974 .
[48] Local algebras of a differential quasigroup , 2006 .
[49] Ian M. Wanless. Atomic Latin Squares based on Cyclotomic Orthomorphisms , 2005, Electron. J. Comb..
[50] Anna B. Romanowska,et al. Post-Modern Algebra , 1999 .
[51] Jonathan D. H. Smith. Quasigroups and Loops , 2006 .
[52] R. C. Bose. Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .
[53] Mikhail Klin,et al. Links between Latin squares, nets, graphs and groups: Work inspired by a paper of A. Barlotti and K. Strambach , 2005, Electron. Notes Discret. Math..
[54] Rory A. Fisher,et al. The 6 × 6 Latin squares , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.
[55] Anton Suschkewitsch. On a generalization of the associative law , 1929 .
[56] E. T. Parker. The Maximum Number of Digraph-Distinct Ordered Quadruples on Six Marks , 1975, J. Comb. Theory, Ser. A.
[57] Derek G. Corneil,et al. Algorithmic Techniques for the Generation and Analysis of Strongly Regular Graphs and other Combinatorial Configurations , 1978 .
[58] D. Jungnickel. Finite Geometries and Designs: Existence results for translation nets , 1981 .
[59] R. Artzy,et al. Crossed-inverse and related loops , 1959 .
[60] B. F. Bryant,et al. Principal Loop-Isotopes of Quasigroups , 1966, Canadian Journal of Mathematics.
[61] Aiso Heinze. Applications of Schur rings in algebraic combinatorics: graphs, partial difference sets and cyclotomic schemes , 2001 .