Loops, Latin Squares and Strongly Regular Graphs: An Algorithmic Approach via Algebraic Combinatorics

Using in conjunction computer packages GAP and COCO we establish an efficient algorithmic approach for the investigation of automorphism groups of geometric Latin square graphs. With the aid of this approach an infinite series of proper loops is presented which have a sharply transitive group of collineations. The interest in such loops was expressed by A. Barlotti and K. Strambach.

[1]  G. Mullen,et al.  Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.

[2]  Jonathan D. H. Smith,et al.  Post-Modern Algebra: Smith/Post-Modern , 1999 .

[3]  Mikhail E. Muzychuk,et al.  Some Implications on Amorphic Association Schemes , 2010, J. Comb. Theory, Ser. A.

[4]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[5]  B. McKay,et al.  Small latin squares, quasigroups, and loops , 2007 .

[6]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[7]  Sherman K. Stein,et al.  Cycles in algebraic systems , 1956 .

[8]  Karl Strambach,et al.  The geometry of binary systems , 1983 .

[9]  Alexander A. Ivanov,et al.  Investigations in Algebraic Theory of Combinatorial Objects , 1994 .

[10]  S. Shrikhande The uniqueness of the L_2 association scheme , 1958 .

[11]  Ian M. Wanless,et al.  On the Number of Latin Squares , 2005, 0909.2101.

[12]  Mikhail H. Klin,et al.  Switching of Edges in Strongly Regular Graphs I: A Family of Partial Difference Sets on 100 Vertices , 2003, Electron. J. Comb..

[13]  Hanfried Lenz,et al.  Design theory , 1985 .

[14]  M. Klin,et al.  Cellular Rings and Groups of Automorphisms of Graphs , 1994 .

[15]  On 2-transitive 3-nets , 1991 .

[16]  Kenneth Kunen G-Loops and Permutation Groups☆ , 1999 .

[17]  W. Haemers,et al.  Association schemes , 1996 .

[18]  A. V. Ivanov,et al.  Amorphic Cellular Rings , 1994 .

[19]  René Peeters Uniqueness of strongly regular graphs having minimal p-rank , 1995 .

[20]  Erich Schönhardt Über lateinische Quadrate und Unionen. , 1930 .

[21]  A.-A. A. Jucys,et al.  The Number of Distinct Latin Squares as a Group-Theoretical Constant , 1976, J. Comb. Theory, Ser. A.

[22]  E. G. Goodaire,et al.  A Class of Loops Which are Isomorphic to all Loop Isotopes , 1982, Canadian Journal of Mathematics.

[23]  E. L. Wilson A Class of Loops with the Isotopy-Isomorphy Property , 1966, Canadian Journal of Mathematics.

[24]  D. R. Hughes Design Theory , 1985 .

[25]  K. Phelps Automorphism free latin square graphs , 1980, Discret. Math..

[26]  G. Eric Moorhouse Bruck nets, codes, and characters of loops , 1991, Des. Codes Cryptogr..

[27]  K. Strambach,et al.  Loops as Invariant Sections in Groups, and their Geometry , 1994, Canadian Journal of Mathematics.

[28]  D. Jungnickel Latin squares, their geometries and their groups. A survey , 1990 .

[29]  Arthur Cayley The Collected Mathematical Papers: On Latin squares , 2009 .

[30]  R. A. Bailey,et al.  Strata for Randomized Experiments , 1991 .

[31]  K. Kunen The structure of conjugacy closed loops , 2000 .

[32]  Dieter Jungnickel,et al.  Translation nets: a survey , 1992, Discret. Math..

[33]  M. Klin,et al.  The isomorphism problem for circulant graphs via Schur ring theory , 1999, Codes and Association Schemes.

[34]  Edward Dobson,et al.  Some Non-Normal Cayley Digraphs of the Generalized Quaternion Group of Certain Orders , 2003, Electron. J. Comb..

[35]  Mikhail H. Klin,et al.  For computations with coherent configurations , 1991, ISSAC '91.

[36]  D. Jungnickel Existence results for translation nets, II , 1989 .

[37]  R. H. Bruck Finite Nets, I. Numerical Invariants , 1951, Canadian Journal of Mathematics.

[38]  B. Weisfeiler On construction and identification of graphs , 1976 .

[39]  Donald Keedwell Decompositions of Complete Graphs Defined by Quasigroups , 1982 .

[40]  Alice Devillers,et al.  Rank 3 Latin square designs , 2006, J. Comb. Theory, Ser. A.

[41]  T. Bier,et al.  Numerical invariants of strongly regular graphs , 1988, J. Comb. Theory, Ser. A.

[42]  R. A. Bailey Orthogonal partitions in designed experiments , 1996 .

[43]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[44]  S. S. Shrikhande,et al.  The Uniqueness of the $\mathrm{L}_2$ Association Scheme , 1959 .

[45]  R. A. Bailey,et al.  Translation nets and fixed-point-free group automorphisms , 1990, J. Comb. Theory A.

[46]  R. H. Bruck Finite nets. II. Uniqueness and imbedding. , 1963 .

[47]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[48]  Local algebras of a differential quasigroup , 2006 .

[49]  Ian M. Wanless Atomic Latin Squares based on Cyclotomic Orthomorphisms , 2005, Electron. J. Comb..

[50]  Anna B. Romanowska,et al.  Post-Modern Algebra , 1999 .

[51]  Jonathan D. H. Smith Quasigroups and Loops , 2006 .

[52]  R. C. Bose Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .

[53]  Mikhail Klin,et al.  Links between Latin squares, nets, graphs and groups: Work inspired by a paper of A. Barlotti and K. Strambach , 2005, Electron. Notes Discret. Math..

[54]  Rory A. Fisher,et al.  The 6 × 6 Latin squares , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.

[55]  Anton Suschkewitsch On a generalization of the associative law , 1929 .

[56]  E. T. Parker The Maximum Number of Digraph-Distinct Ordered Quadruples on Six Marks , 1975, J. Comb. Theory, Ser. A.

[57]  Derek G. Corneil,et al.  Algorithmic Techniques for the Generation and Analysis of Strongly Regular Graphs and other Combinatorial Configurations , 1978 .

[58]  D. Jungnickel Finite Geometries and Designs: Existence results for translation nets , 1981 .

[59]  R. Artzy,et al.  Crossed-inverse and related loops , 1959 .

[60]  B. F. Bryant,et al.  Principal Loop-Isotopes of Quasigroups , 1966, Canadian Journal of Mathematics.

[61]  Aiso Heinze Applications of Schur rings in algebraic combinatorics: graphs, partial difference sets and cyclotomic schemes , 2001 .