Collisional Models and Scaling Laws: A New Interpretation of the Shape of the Main-Belt Asteroid Size Distribution☆

Abstract Numerical models of the collisional evolution of the main-belt asteroids lead to a new interpretation of the shape of the observed size distribution. Using recent hydrocode predictions of shattering and disruption criteria as starting points, we adjust the size–strength scaling relation for asteroidal strengths within our collisional model until a best least-squares fit to the observed size distribution is obtained. We show for the first time general agreement between the predictions of hydrocodes, results of numerical collisional models, and the observed size distribution of the main-belt population.

[1]  Veverka,et al.  NEAR's flyby of 253 mathilde: images of a C asteroid , 1997, Science.

[2]  T. Gehrels,et al.  The Palomar-Leiden survey of faint minor planets , 1970 .

[3]  J. Head,et al.  Collisional and Dynamical History of Ida , 1996 .

[4]  P. Farinella,et al.  Wavy size distributions for collisional systems with a small-size cutoff , 1994 .

[5]  Paolo Farinella,et al.  Asteroid collisional evolution: results from current scaling algorithms , 1994 .

[6]  Erik Ian. Asphaug Dynamic fragmentation in the solar system: Applications of fracture mechanics and hydrodynamics to questions of planetary evolution. , 1993 .

[7]  J. Veverka,et al.  Collisional History of Gaspra , 1994 .

[8]  Robert Jedicke,et al.  Observational Constraints on the Centaur Population , 1997 .

[9]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[10]  Eileen V. Ryan,et al.  On collisional disruption - Experimental results and scaling laws , 1990 .

[11]  S. Love,et al.  Catastrophic Impacts on Gravity Dominated Asteroids , 1996 .

[12]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[13]  Catastrophic collisions: Laboratory impact experiments, hydrocode simulations, and the scaling problem. , 1992 .

[14]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[15]  S. Dermott,et al.  The Collisional Evolution of the Asteroid Belt and Its Contribution to the Zodiacal Cloud , 1997 .

[16]  H. Melosh,et al.  ASTEROIDS : SHATTERED BUT NOT DISPERSED , 1997 .

[17]  K. Holsapple,et al.  On the fragmentation of asteroids and planetary satellites , 1990 .

[18]  R. Jedicke,et al.  The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids , 1998 .

[19]  D. Davis,et al.  Experiments and scaling laws for catastrophic collisions , 1989 .

[20]  Keith A. Holsapple,et al.  Catastrophic disruptions and cratering of solar system bodies: a review and new results , 1994 .

[21]  Alberto Cellino,et al.  The size distribution of main-belt asteroids from IRAS data , 1991 .

[22]  T. Gehrels,et al.  Scanning with charge-coupled devices , 1991 .

[23]  K. Holsapple,et al.  Laboratory simulations of large scale fragmentation events , 1991 .

[24]  H. Melosh,et al.  Impact Craters on Asteroids: Does Gravity or Strength Control Their Size? , 1996 .

[25]  P. Farinella,et al.  The asteroids as outcomes of catastrophic collisions , 1982 .