Inverse problems for $p$-Laplace type equations under monotonicity assumptions

We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.

[1]  OPTIMAL SIZE ESTIMATES FOR THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT , 1999 .

[2]  A. Friedman,et al.  Identification problems in potential theory , 1988 .

[3]  Bastian von Harrach,et al.  Monotonicity-Based Shape Reconstruction in Electrical Impedance Tomography , 2013, SIAM J. Math. Anal..

[4]  J. Cheeger,et al.  Critical Sets of Elliptic Equations , 2012, 1207.4236.

[5]  Daniel Hauer,et al.  The p-Dirichlet-to-Neumann operator with applications to elliptic and parabolic problems , 2015 .

[6]  Bastian Harrach,et al.  Simultaneous determination of the diffusion and absorption coefficient from boundary data , 2012 .

[7]  T. Iwaniec,et al.  p-harmonic equation and quasiregular mappings , 1987 .

[8]  Tommi Brander,et al.  Calderón problem for the p-Laplacian: First order derivative of conductivity on the boundary , 2014, 1403.0428.

[9]  Thomas Wolff,et al.  Gap series constructions for the p-Laplacian , 2007 .

[10]  Kari Astala,et al.  Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (Pms-48) , 2009 .

[11]  P. Lindqvist Notes on the p-Laplace equation , 2006 .

[12]  Tommi Brander,et al.  SUPERCONDUCTIVE AND INSULATING INCLUSIONS FOR LINEAR AND NON-LINEAR CONDUCTIVITY EQUATIONS , 2015, 1510.09029.

[13]  Hans Triebel,et al.  Function spaces in Lipschitz domains and on Lipschitz manifolds , 2002 .

[14]  Masaru Ikehata,et al.  RECONSTRUCTION OF THE SHAPE OF THE INCLUSION BY BOUNDARY MEASUREMENTS , 1998 .

[15]  Edi Rosset,et al.  The Inverse Conductivity Problem with One Measurement: Bounds on the Size of the Unknown Object , 1998, SIAM J. Appl. Math..

[16]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[17]  Russell M. Brown,et al.  Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result , 2001 .

[18]  Masaru Ikehata,et al.  Reconstruction of the support function for inclusion from boundary measurements , 2000 .

[19]  M. Salo,et al.  $n$-harmonic coordinates and the regularity of conformal mappings , 2012, 1209.1285.

[20]  Tommi Brander,et al.  Enclosure method for the p-Laplace equation , 2014, Inverse Problems.

[21]  Bastian Gebauer,et al.  Localized potentials in electrical impedance tomography , 2008 .

[22]  N. Marola,et al.  On the problem of unique continuation for the p-Laplace equation , 2011, 1105.1241.

[23]  Bastian von Harrach,et al.  Recent Progress on the Factorization Method for Electrical Impedance Tomography , 2013, Comput. Math. Methods Medicine.

[24]  Masaru Ikehata,et al.  Size estimation of inclusion , 1998 .

[25]  Gunther Uhlmann,et al.  Inverse problems: seeing the unseen , 2014 .

[26]  J. Manfredi p-harmonic functions in the plane , 1988 .

[27]  Jin Keun Seo,et al.  The inverse conductivity problem with one measurement: stability and estimation of size , 1997 .

[28]  GEOMETRIC PROPERTIES OF SOLUTIONS TO THE ANISOTROPIC p-LAPLACE EQUATION IN DIMENSION TWO , 2001 .

[29]  Xiao Zhong,et al.  An Inverse Problem for the p-Laplacian: Boundary Determination , 2011, SIAM J. Math. Anal..

[30]  M. Kar,et al.  Quantitative uniqueness estimates for $p$-Laplace type equations in the plane , 2015, 1512.00673.

[31]  Ur Mathematik,et al.  GENERALIZED SOLUTIONS OF A SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND ELLIPTIC TYPE WITH DISCONTINUOUS COEFFICIENTS , 2009 .

[32]  Lawrence C. Evans,et al.  The 1-Laplacian , the ∞-Laplacian and Differential Games , 2006 .

[33]  Samuli Siltanen,et al.  Probing for electrical inclusions with complex spherical waves , 2007 .

[34]  Giovanni Alessandrini,et al.  Singular solutions of elliptic equations and the determination of conductivity by boundary measurements , 1990 .

[35]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[36]  H. Triebel Fractals and spectra , 1997 .