Phase Change Random Access Memory Integration

This chapter reviews the basic process integration and structural design issues regarding the phase change random access memory cell. Basic memory cell design, phase change device characteristics and access device requirements will be reviewed, and then a detailed discussion of the phase change memory device design follows. Various cell designs, including the mushroom cell, cell, μTrench cell and pore cell will be evaluated in terms of RESET current (the current to switch the cell to the amorphous state by melting and rapidly quenching) and RESET current variability minimization. Finally, multi-level phase change random access memory will be discussed.

[1]  Ferdinando Bedeschi,et al.  A Multi-Level-Cell Bipolar-Selected Phase-Change Memory , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[2]  B. Gleixner,et al.  A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[3]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[4]  M. Breitwisch,et al.  Novel One-Mask Self-Heating Pillar Phase Change Memory , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[5]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[6]  J. Kim,et al.  Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology , 2006, 2006 International Electron Devices Meeting.

[7]  R. Bergmann,et al.  Patterning of N:Ge2Sb2Te5 Films and the Characterization of Etch Induced Modification for Non-Volatile Phase Change Memory Applications , 2008, 2008 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[8]  S. Hudgens,et al.  Nonvolatile, high density, high performance phase-change memory , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[9]  Kinam Kim,et al.  Highly Reliable Ring-Type Contact for High-Density Phase Change Memory , 2006 .

[10]  S.O. Park,et al.  Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation , 2007, 2007 IEEE Symposium on VLSI Technology.

[11]  J. Kim,et al.  Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[12]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[13]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[14]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[15]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[16]  Kinam Kim,et al.  Programming Characteristics of Phase Change Random Access Memory Using Phase Change Simulations , 2005 .

[17]  Byung-Gil Choi,et al.  A 0.1-$\mu{\hbox {m}}$ 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) With 66-MHz Synchronous Burst-Read Operation , 2007, IEEE Journal of Solid-State Circuits.

[18]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[19]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[20]  Kinam Kim,et al.  Ring contact electrode process for high density phase change random access memory , 2007 .

[21]  M. Breitwisch,et al.  Novel Lithography-Independent Pore Phase Change Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[22]  S.O. Park,et al.  Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[23]  Kinam Kim,et al.  Highly reliable 50nm contact cell technology for 256Mb PRAM , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[24]  M. Breitwisch,et al.  On the dynamic resistance and reliability of phase change memory , 2008, 2008 Symposium on VLSI Technology.