MONOREG - an expert system for structural elucidation of monoterpenes

This paper describes a new expert system denominated MONOREG for structural determination of monoterpenes. This system is composed of five programs capable of performing 13 C NMR spectra data analyses and analyses of systematic data from living organisms. At the end of this procedure, it shows the likely skeletons of the compound in question as well as the substructures compatible with the 13 C NMR data. The system was tested on the skeleton elucidation of 40 monoterpenes from a wide variety of structure types and exhibited excellent results in the skeleton prediction process.

[1]  T. Ishikawa,et al.  Monoterpenoid Glycosides of Glehnia littoralis Root and Rhizoma , 1998 .

[2]  S. Park,et al.  Metabolism of isopiperitenones in cell suspension culture of Mentha piperita , 1997 .

[3]  K. Gao,et al.  Coniferyl and sinapyl alcohol derivatives from Ligularia duciformis , 1998 .

[4]  Nanqun Zhu,et al.  Three glucosides from Maytenus ilicifolia , 1998 .

[5]  Dennis H. Smith,et al.  Applications of artificial intelligence for chemical inference. 37. GENOA: a computer program for structure elucidation utilizing overlapping and alternative substructures , 1981 .

[6]  M. Munk Computer-Based Structure Determination: Then and Now , 1998, Journal of chemical information and computer sciences.

[7]  Joshua Lederberg,et al.  Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project , 1980 .

[8]  H. Shimoda,et al.  Bioactive constituents of Chinese natural medicines. IV. Rhodiolae radix. (2).: On the histamine release inhibitors from the underground part of Rhodiola sacra (Prain ex Hamet) S. H. Fu (Crassulaceae): chemical structures of rhodiocyanoside D and sacranosides A and B. , 1997, Chemical & pharmaceutical bulletin.

[9]  Marcelo J. P. Ferreira,et al.  Automatic identification of terpenoid skeletons through 13C nuclear magnetic resonance data disfunctionalization , 2001 .

[10]  Sandra A. V. Alvarenga,et al.  Ditregra - an auxiliary program for structural determination of diterpenes , 1997 .

[11]  Michel Carabedian,et al.  Inferring Extended Virtual Knowledge from an EPIOS Conversion Graph of Overlapping Substructures , 1994, J. Chem. Inf. Comput. Sci..

[12]  Jacques-Emile Dubois,et al.  Large Virtual Enhancement of a 13C NMR Database. A Structural Crowning Extrapolation Method Enabling Spectral Data Transfer , 1998, J. Chem. Inf. Comput. Sci..

[13]  J. Gastmans,et al.  Applications D'Intelligence Artificielle Dans La Chimie Organique. XVII. Nouveaux Programmes Du Projet SISTEMAT , 1994 .

[14]  J. Dubois,et al.  Elucidation by progressive intersection of ordered substructures from carbon-13 nuclear magnetic resonance , 1988 .

[15]  M. Hyakumachi,et al.  Biotransformation of (+)- and (−)-camphorquinones to camphanediols by Glomerella cingulata , 1997 .

[16]  Vicente de Paulo Emerenciano,et al.  Um sistema especialista em determinação estrutural de monoterpenos e iridóides , 1999 .

[17]  Han-Dong Sun,et al.  Monoterpenoid glycosides from ligustrum robustum , 1998 .

[18]  J. Marco,et al.  Germacranolides and a monoterpene cyclic peroxide from Artemisia fragrans , 1998 .

[19]  A. Ahmed,et al.  Carvotacetone derivatives from the Egyptian plant Sphaeranthus suaveolens , 1997 .

[20]  N. Watanabe,et al.  Citronellyl disaccharide glycoside as an aroma precursor from rose flowers , 1998 .

[21]  V. Emerenciano,et al.  Applications of artificial intelligence to structure determination of organic compounds. XX. Determination of groups attached to the skeleton of natural products using 13 C nuclear magnetic resonance spectroscopy , 1997 .

[22]  M. Ferreira,et al.  REGRAS: an auxiliary program for pattern recognition and substructure elucidation of monoterpenes , 2001 .

[23]  J. Darias,et al.  UNCOMMON TETRAHYDROFURAN MONOTERPENES FROM ANTARCTIC PANTONEURA PLOCAMIOIDES , 1996 .

[24]  H. Kameoka,et al.  Biotransformation of (−)- and (+)-isopinocampheol by three fungi , 1997 .

[25]  Miquel Barceló,et al.  Inteligencia Artificial , 2001 .

[26]  C. Passreiter,et al.  10-acetoxy-9-chloro-8,9-dehydrothymol and further thymol derivatives from Arnica sachalinensis , 1998 .

[27]  Geoffrey D. Brown,et al.  Oxygenated bisabolanes from Alpinia densibracteata , 1997 .

[28]  Patrick Fontana,et al.  Assemble 2.0: a structure generator , 2000 .

[29]  Jacques-Emile Dubois,et al.  A combined model of multi-resonance subspectra/substructure and DARC topological structure representation. Local and global knowledge in the carbon-13 NMR DARC database , 1991, J. Chem. Inf. Comput. Sci..

[30]  J. Kwak,et al.  Artekeiskeanin A: a new coumarin-monoterpene ether from Artemisia keiskeana. , 1997, Planta medica.

[31]  Martin Will,et al.  Fully Automated Structure Elucidation - A Spectroscopist's Dream Comes True , 1996, J. Chem. Inf. Comput. Sci..

[32]  M. Jaspars Computer assisted structure elucidation of natural products using two-dimensional NMR spectroscopy† , 1999 .

[33]  Han-Dong Sun,et al.  Megastigmane glucosides from Stachys byzantina , 1997 .

[34]  M. Yoshikawa,et al.  Medicinal foodstuffs. V. Moroheiya. (1): Absolute stereostructures of corchoionosides A, B, and C, histamine release inhibitors from the leaves of Vietnamese Corchorus olitorius L. (Tiliaceae). , 1997, Chemical & pharmaceutical bulletin.

[35]  T. Nohara,et al.  Five New Monoterpene Glycosides and Other Compounds form Foeniculi Fructus (Fruit of Foeniculum vulgare MILLER) , 1996 .

[36]  Jacques-Emile Dubois,et al.  Single-resonance subspectra/substructure investigations of the carbon-13 DARC databank. Representation of local and global topological knowledge , 1991, J. Chem. Inf. Comput. Sci..

[37]  Hang-Ching Lin,et al.  Monoterpene glycosides from Paeonia suffruticosa , 1996 .

[38]  H. Kameoka,et al.  Biotransformation of (−)-cis-myrtanol and (+)-trans-myrtanol by plant pathogenic fungus, Glomerella cingulata , 1997 .

[39]  W. Bremser,et al.  Mutual assignment of subspectra and substructures—A way to structure elucidation by 13C NMR spectroscopy† , 1975 .