Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics

A novel proposal for the robust generation of atomic entanglement in two coupled cavities is proposed, for the first time via virtually excitation and quantum Zeno dynamics. Throughout the procedure, both cavity modes and atoms are only virtually excited, making the system robust against atomic and photonic decays. The influence of the atom-photon decay and the imperfection of the initial atom state on the prepared-state fidelity is also analyzed, which shows that the present scheme is feasible based on current technologies. At last, the proposal is generalized for the preparation of two atomic ensembles.

[1]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[2]  Michael J. Hartmann,et al.  Quantum many‐body phenomena in coupled cavity arrays , 2008, 0808.2557.

[3]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[4]  Masaya Notomi,et al.  Large-scale arrays of ultrahigh-Q coupled nanocavities , 2008 .

[5]  G. Guo,et al.  Scalable, high-speed one-way quantum computer in coupled-cavity arrays , 2009 .

[6]  Xiao-Qiang Shao,et al.  Distributed CNOT gate via quantum Zeno dynamics , 2009 .

[7]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[8]  H. S. Green Die mathematischen Grundlagen der Quantenmechanik , 1966 .

[9]  Zhiyuan Li,et al.  Transfer behavior of quantum states between atoms in photonic crystal coupled cavities , 2010 .

[10]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[11]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[12]  K. Hakuta,et al.  Single atoms on an optical nanofibre , 2007, 0709.2749.

[13]  E.C.G. Sudarshan,et al.  Quantum Zeno dynamics , 2000 .

[14]  F. Nori,et al.  Quantum entanglement via two-qubit quantum Zeno dynamics , 2008 .

[15]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[16]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[17]  Christian Schneider,et al.  Single photon emission from a site-controlled quantum dot-micropillar cavity system , 2009 .

[18]  P. Facchi,et al.  Quantum Zeno dynamics: mathematical and physical aspects , 2008, 0903.3297.

[19]  K. R. Parthasarathy,et al.  Mathematical Foundation of Quantum Mechanics , 2005 .

[20]  Gang Li,et al.  Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode , 2010 .

[21]  Kohzo Hakuta,et al.  Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber , 2009 .

[22]  Tiancai Zhang,et al.  Temperature determination of cold atoms based on single-atom countings , 2011 .

[23]  Herzog,et al.  Interaction-free measurement. , 1995, Physical review letters.

[24]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[26]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[27]  S. Deleglise,et al.  Freezing coherent field growth in a cavity by the quantum zeno effect. , 2008, Physical review letters.

[28]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[29]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[30]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[31]  Yan-Ling Li,et al.  Greenberger–Horne–Zeilinger state generation of three atoms trapped in two remote cavities , 2010 .

[32]  J. Ignacio Cirac,et al.  New frontiers in quantum information with atoms and ions , 2004 .

[33]  Michael G. Moore,et al.  Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits , 2008 .

[34]  K. Peng,et al.  Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms , 2006, quant-ph/0611178.

[35]  S. Bose,et al.  Heralded generation of entanglement with coupled cavities , 2007, 0712.2413.

[36]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[37]  X. Shao,et al.  Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics , 2010 .

[38]  Zeno logic gates using microcavities , 2006, quant-ph/0606209.

[39]  H. J. Kimble,et al.  Strong interactions of single atoms and photons near a dielectric boundary , 2010, 1011.0740.

[40]  Wolfgang Ketterle,et al.  Continuous and pulsed quantum zeno effect. , 2006, Physical review letters.

[41]  Gang Li,et al.  Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations , 2009 .

[42]  C. Xie,et al.  Coherent manipulation of spin-wave vector for polarization of photons in an atomic ensemble , 2011, 1107.1914.

[43]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.