Variational Numerical Methods for Solving Nonlinear Diffusion Equations Arising in Image Processing

In this paper we give a general, robust, and efficient approach for numerical solutions of partial differential equations (PDEs) arising in image processing and computer vision. The well-established variational computational techniques, namely, finite element, finite volume, and complementary volume methods, are introduced on a common base to solve nonlinear problems in image multiscale analysis. Since they are based on principles like minimization of energy (finite element method) or conservation laws (finite and complemetary volume methods), they have strong physical backgrounds. They allow clear and physically meaningful derivation of difference equations that are local and easy to implement. The variational methods are combined with semi-implicit discretization in scale, which gives favorable stability and efficiency properties of computations. We show here L∞-stability without any restrictions on scale steps. Our approach leads finally to solving linear systems in every discrete scale level, which can be done efficiently by fast preconditioned iterative solvers. We discuss such computational schemes for the regularized (in the sense of F. Catte et al., SIAM J. Numer. Anal.129, 1992, 182?193) Perona?Malik anisotropic diffusion equation (P. Perona and J. Malik, IEEE Trans. Pattern Anal. Mach. Intell.12, 1990, 629?639) and for nonlinear degenerate diffusion equation of mean curvature flow type studied by L. Alvarez et al. (SIAM J. Numer. Anal.129, 1992, 845?866).

[1]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[2]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[3]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[4]  Karol Mikula,et al.  Evolution of Convex Plane Curves Describing Anisotropic Motions of Phase Interfaces , 1996, SIAM J. Sci. Comput..

[5]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[6]  Gerhard Dziuk,et al.  CONVERGENCE OF A SEMI-DISCRETE SCHEME FOR THE CURVE SHORTENING FLOW , 1994 .

[7]  Jean-Michel Morel,et al.  Introduction To The Special Issue On Partial Differential Equations And Geometry-driven Diffusion In Image Processing And Analysis , 1998, IEEE Trans. Image Process..

[8]  Martin Rumpf,et al.  An Adaptive Finite Element Method for Large Scale Image Processing , 1999, J. Vis. Commun. Image Represent..

[9]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[10]  Karol Mikula,et al.  Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing , 2001, Numerische Mathematik.

[11]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  A. Siamj.,et al.  EVOLUTION OF PLANE CURVES DRIVEN BY A NONLINEAR FUNCTION OF CURVATURE AND ANISOTROPY , 1999 .

[13]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[14]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[15]  Karol Mikula,et al.  Evolution of Plane Curves Driven by a Nonlinear Function of Curvature and Anisotropy , 2001, SIAM J. Appl. Math..

[16]  Alessandro Sarti,et al.  Numerical solution of parabolic equations related to level set formulation of mean curvature flow , 1998 .

[17]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[18]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  Eberhard Bänsch,et al.  Adaptivity in 3D image processing , 2001 .

[21]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  K. Mikula,et al.  A coarsening finite element strategy in image selective smoothing , 1997 .

[24]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[25]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[26]  N. Walkington Algorithms for Computing Motion by Mean Curvature , 1996 .

[27]  Alessandro Sarti,et al.  Nonlinear Multiscale Analysis of 3D Echocardiographic Sequences , 1999, IEEE Trans. Medical Imaging.

[28]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[29]  J. Kacur,et al.  Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .

[30]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[31]  G. Sapiro,et al.  On affine plane curve evolution , 1994 .

[32]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[33]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[34]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[35]  Karol Mikula,et al.  Solution of nonlinearly curvature driven evolution of plane curves , 1999 .

[36]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[37]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.