Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of Rhodamine B dye

[1]  Y. Vasseghian,et al.  Tailoring the heterojunction of TiO2 with multivalence CeO2 nanocrystals - for detection of toxic 2-aminophenol. , 2022, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[2]  V. Raj,et al.  g-C3N4/TiO2/CuO S-scheme heterostructure photocatalysts for enhancing organic pollutant degradation , 2022, Journal of Physics and Chemistry of Solids.

[3]  E. Darezereshki,et al.  Methylene Blue Degradation Over Green Fe3O4 Nanocatalyst Fabricated Using Leaf Extract of Rosmarinus officinalis , 2022, Topics in Catalysis.

[4]  F. Haghighat,et al.  Recent developments in photocatalysis of industrial effluents ։ A review and example of phenolic compounds degradation. , 2022, Chemosphere.

[5]  W. Jo,et al.  Magnetically sensitive TiO2 hollow sphere/Fe3O4 core-shell hybrid catalyst for high-performance sunlight-assisted photocatalytic degradation of aqueous antibiotic pollutants , 2022, Journal of Alloys and Compounds.

[6]  A. Kianfar,et al.  Fabrication of heterojunction ternary Fe3O4/TiO2/CoMoO4 as a magnetic photocatalyst for organic dyes degradation under sunlight irradiation , 2022, Journal of Photochemistry and Photobiology A: Chemistry.

[7]  A. Bilgiç Fabrication of monoBODIPY-functionalized Fe3O4@SiO2@TiO2 nanoparticles for the photocatalytic degradation of rhodamine B under UV irradiation and the detection and removal of Cu(II) ions in aqueous solutions , 2021, Journal of Alloys and Compounds.

[8]  H. Nourmoradi,et al.  Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms , 2021 .

[9]  A. Kianfar,et al.  Synthesis and characterization of the magnetic submicrocube Fe3O4/TiO2/CuO as a reusable photocatalyst for the degradation of dyes under sunlight irradiation , 2021, Environmental Technology & Innovation.

[10]  S. K. Srivastava,et al.  Visible light induced photodegradation of chlorinated organic pollutants using highly efficient magnetic Fe3O4/TiO2 nanocomposite , 2021 .

[11]  Yang-hsin Shih,et al.  Magnetic Fe3O4@TiO2 nanocomposites to degrade bisphenol A, one emerging contaminant, under visible and long wavelength UV light irradiation , 2021 .

[12]  M. Salavati‐Niasari,et al.  Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water , 2021, International Journal of Hydrogen Energy.

[13]  I. Khan,et al.  Enhancing the photodegradation of phenol using Fe3O4/SiO2 binary nanocomposite mediated by silane agent , 2021 .

[14]  M. Salavati‐Niasari,et al.  Porous hollow Ag/Ag2S/Ag3PO4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation. , 2021, Chemosphere.

[15]  N. M. Sarbon,et al.  Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies , 2020, AMB Express.

[16]  G. Diao,et al.  A novel method for facile preparation of recoverable Fe3O4@TiO2 core-shell nanospheres and their advanced photocatalytic application , 2020 .

[17]  M. Shokouhimehr,et al.  Catalytic degradation of organic dyes using green synthesized Fe3O4-cellulose-copper nanocomposites , 2020 .

[18]  A. Routh,et al.  Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts. , 2020, Journal of colloid and interface science.

[19]  H. Hilal,et al.  Removal of acetaminophen from water by simulated solar light photodegradation with ZnO and TiO2 nanoparticles: Catalytic efficiency assessment for future prospects , 2020 .

[20]  Yangbin Ding,et al.  Preparation of TiO2/Fe3O4 composite by sol-gel method and its photocatalytic activity for removal of Rhodamine B from water , 2020 .

[21]  N. Rani,et al.  Influence of anionic and non-ionic surfactants on the synthesis of core-shell Fe3O4@TiO2 nanocomposite synthesized by hydrothermal method , 2020 .

[22]  O. Amiri,et al.  Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration. , 2020, Journal of hazardous materials.

[23]  K. Y. Foo,et al.  Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: A review , 2020 .

[24]  J. Macák,et al.  One-Step Decoration of TiO2 Nanotubes with Fe3O4 Nanoparticles: Synthesis and Photocatalytic and Magnetic Properties , 2020 .

[25]  M. Salavati‐Niasari,et al.  Pechini sol-gel synthesis of Cu2O/Li3BO3 and CuO/Li3BO3 nanocomposites for visible light-driven photocatalytic degradation of dye pollutant , 2020 .

[26]  Lei Shi,et al.  Investigation of photocatalytic activity through photo-thermal heating enabled by Fe3O4/TiO2 composite under magnetic field , 2020, Solar Energy.

[27]  U. Narkiewicz,et al.  Effective processes of phenol degradation on Fe3O4–TiO2 nanostructured magnetic photocatalyst , 2020 .

[28]  P. K. Boruah,et al.  Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. , 2019, Journal of hazardous materials.

[29]  Wei Ma,et al.  An efficient approach for the synthesis of magnetic separable Fe3O4@TiO2 core-shell nanocomposites and its magnetic and photocatalytic performances , 2019, Materials Research Express.

[30]  F. Gracia,et al.  Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants , 2019, Journal of Molecular Liquids.

[31]  M. Aroon,et al.  Photodegradation of methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light , 2019, Materials Chemistry and Physics.

[32]  Xiaodong Wu,et al.  Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal. , 2019, Journal of environmental management.

[33]  H. Ghafuri,et al.  Synthesis and characterization of magnetic nanocomposite Fe3O4@TiO2/Ag,Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation , 2019, Optik.

[34]  F. Gracia,et al.  Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets. , 2019, Journal of colloid and interface science.

[35]  V. Garg,et al.  Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism. , 2018, Chemosphere.

[36]  W. Shen,et al.  Preparation and characterization of the magnetic Fe3O4@TiO2 nanocomposite with the in-situ synthesis coating method , 2018, Materials Chemistry and Physics.

[37]  Lei Shi,et al.  Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles , 2018, Energy Conversion and Management.

[38]  K. Tedsree,et al.  Green synthesis of high dispersion and narrow size distribution of zero-valent iron nanoparticles using guava leaf (Psidium guajava L) extract , 2018, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[39]  M. Farzadkia,et al.  Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies , 2018, Journal of Cleaner Production.

[40]  Chao Tai,et al.  Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide. , 2018, Journal of hazardous materials.

[41]  R. Bharagava,et al.  Green synthesis of TiO 2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater , 2018 .

[42]  A. Bharti,et al.  Catalytic decomposition of 2-chlorophenol using an ultrasonic-assisted Fe3O4-TiO2@MWCNT system: Influence factors, pathway and mechanism study. , 2018, Journal of colloid and interface science.

[43]  P. A. Jose,et al.  Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3 , 2018 .

[44]  R. Sharma,et al.  Ecotoxic potential of a presumably non-toxic azo dye. , 2018, Ecotoxicology and environmental safety.

[45]  M. K. Naskar,et al.  Template-free hydrothermal synthesis of MgO-TiO2 microcubes toward high potential removal of toxic water pollutants , 2018 .

[46]  N. Tit,et al.  Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles , 2017 .

[47]  Hongfeng Zhang,et al.  Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants. , 2017, Water science and technology : a journal of the International Association on Water Pollution Research.

[48]  K. Sreenivasulu,et al.  Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: A magnetically recoverable catalyst for organic dye degradation in aqueous solution , 2017 .

[49]  H. Younesi,et al.  Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater , 2017 .

[50]  K. Lin,et al.  Degradation of Acid Azo Dyes Using Oxone Activated by Cobalt Titanate Perovskite , 2017, Water, Air, & Soil Pollution.

[51]  W. Tu,et al.  Magnetically separable Fe3O4@TiO2 nanospheres: preparation and photocatalytic activity , 2016, Journal of Materials Science: Materials in Electronics.

[52]  M. Vinothkannan,et al.  One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[53]  M. Salavati‐Niasari,et al.  Cadmium selenide@sulfide nanoparticle composites: Facile precipitation preparation, characterization, and investigation of their photocatalyst activity , 2014 .