Epistemologische betrachtungen zu [S4, S5]

ZusammenfassungDie zahlreichen modallogischen Systeme zwischen den Standardkalkülen S4 und S5 werden vom epistemologischen Standpunkt aus untersucht, indem ‘Notwendigkeit’ wahlweise als ‘Wissen’ bzw. als ‘Überzeugt-sein’ gedeutet wird. Dabei stellt sich heraus, daß — unter gewissen andernorts begründeten Voraussetzungen über epistemische Logik-S4.4 als Logik der wahren Überzeugungen aufgefaßt werden kann, während die Systeme S4.3.2 und S4.2 als Logiken für solche Leute erscheinen, die das Schema ‘Wissen = wahre Überzeugung’ nur eingeschränkt für ganz spezielle rein doxastische bzw. rein epistemische Sätze akzeptieren. S4.2 ist dabei allem Anschein nach die Logik des Wissens.AbstractThe numerous modal systems between S4 and S5 are investigated from an epistemological point of view by interpreting ‘necessity’ either as ‘knowledge’ or as ‘(strong) belief’. It is shown that-granted some assumptions about epistemic logic for which the author has argued elsewhere-the system S4.4 may be interpreted as the logic of true belief, while S4.3.2 and S4.2 may be taken to represent epistemic logic systems for individuals who accept the scheme ‘knowledge = true belief’ only for certain special instances. There is strong evidence in favor of the assumption that S4.2 is the logic of knowledge.

[1]  Boleslaw Sobocinski A new class of modal systems , 1971, Notre Dame J. Formal Log..

[2]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[3]  Edmund L. Gettier Is Justified True Belief Knowledge? , 1963, Arguing About Knowledge.

[4]  Robert Goldblatt A new extension of S4 , 1973, Notre Dame J. Formal Log..

[5]  J. Jay Zeman,et al.  The propostitional calculus MC and its modal analog , 1968, Notre Dame J. Formal Log..

[6]  Michael Byrd,et al.  Knowledge and true belief in Hintikka's epistemic logic , 1973, J. Philos. Log..

[7]  J. Jay Zeman Semantics for S4.3.2 , 1972, Notre Dame J. Formal Log..

[8]  G. N. Georgacarakos Semantics for S4.04, S4.4, and S4.3.2 , 1976, Notre Dame J. Formal Log..

[9]  Wolfgang Lenzen,et al.  Recent work in epistemic logic , 1978 .

[10]  Boleslaw Sobocinski A proper subsystem of S4.O4 , 1971, Notre Dame J. Formal Log..

[11]  J. Jay Zeman Modal systems in which necessity is "factorable" , 1969, Notre Dame J. Formal Log..

[12]  Michael Dummett,et al.  Modal Logics Between S4 and S5 , 1967 .

[13]  F. Kutschera Einführung in die intensionale Semantik , 1976 .

[14]  Robert Goldblatt Concerning the proper axiom for S4.04 and some related systems , 1973, Notre Dame J. Formal Log..

[15]  David Makinson,et al.  There are infinitely many Diodorean modal functions , 1966, Journal of Symbolic Logic.

[16]  Boleslaw Sobocinski Family K of the non-Lewis modal systems , 1964, Notre Dame J. Formal Log..

[17]  Robert Goldblatt A study of Z modal systems , 1974, Notre Dame J. Formal Log..

[18]  J. Jay Zeman A study of some systems in the neighborhood of S4.4 , 1971, Notre Dame J. Formal Log..

[19]  Wolfgang Lenzen,et al.  Glauben, Wissen und Wahrscheinlichkeit , 1980 .

[20]  E. Lemmon,et al.  Modal Logics Between S 4 and S 5 , 1959 .

[21]  Wolfgang Lenzen,et al.  On some substitution instances of R1 and L1 , 1978, Notre Dame J. Formal Log..

[22]  Allen P. Hazen,et al.  Semantics for S4.2 , 1972, Notre Dame J. Formal Log..

[23]  J. Jay Zeman Complete modalization in S4.4 and S4.0.4 , 1969, Notre Dame J. Formal Log..

[24]  Jaakko Hintikka,et al.  The Modes of Modality , 1969 .

[25]  Boleslaw Sobocinski,et al.  Certain extensions of modal system S4 , 1970, Notre Dame J. Formal Log..