Molecular dynamics simulation of water transport through graphene-based nanopores: Flow behavior and structure characteristics

[1]  Baoxia Mi,et al.  Graphene Oxide Membranes for Ionic and Molecular Sieving , 2014, Science.

[2]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[3]  Hailong Liu,et al.  Effects of impact velocity on pressure-driven nanofluid. , 2013, The Journal of chemical physics.

[4]  Zhiping Xu,et al.  Breakdown of fast water transport in graphene oxides. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Chao Gao,et al.  Ultrathin Graphene Nanofiltration Membrane for Water Purification , 2013 .

[6]  Petros Koumoutsakos,et al.  Barriers to superfast water transport in carbon nanotube membranes. , 2013, Nano letters.

[7]  S. Alavi,et al.  Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates. , 2012, The Journal of chemical physics.

[8]  R. S. Dumont,et al.  Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. , 2012, The Journal of chemical physics.

[9]  Xiaoning Yang,et al.  Molecular Dynamics Simulation of C60 Encapsulation into Single-Walled Carbon Nanotube in Solvent Conditions , 2012 .

[10]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[11]  W. Xiong,et al.  Strain engineering water transport in graphene nanochannels. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  L. Qu,et al.  Membranes of vertically aligned superlong carbon nanotubes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[13]  Yapu Zhao,et al.  Measurement of the rate of water translocation through carbon nanotubes. , 2011, Nano letters.

[14]  Felix Sedlmeier,et al.  Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. , 2010, Nano letters.

[15]  John A. Thomas,et al.  Water flow in carbon nanotubes: transition to subcontinuum transport. , 2009, Physical review letters.

[16]  A. Morpurgo,et al.  Trilayer graphene is a semimetal with a gate-tunable band overlap , 2009, Nature Nanotechnology.

[17]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[18]  G. Wallace,et al.  Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper , 2008 .

[19]  John A. Thomas,et al.  Reassessing fast water transport through carbon nanotubes. , 2008, Nano letters.

[20]  D. Cole,et al.  Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces , 2008 .

[21]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[22]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[23]  Francois Gygi,et al.  Water confined in nanotubes and between graphene sheets: a first principle study. , 2008, Journal of the American Chemical Society.

[24]  F. Stillinger Theory and Molecular Models for Water , 2007 .

[25]  M. C. Gordillo,et al.  High temperature behavior of water inside flat graphite nanochannels , 2007 .

[26]  P. Balbuena,et al.  Effects of Confinement on Water Structure and Dynamics: A Molecular Simulation Study , 2007 .

[27]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[28]  Erin M. Lennon,et al.  Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient. , 2005, The Journal of chemical physics.

[29]  A. Noy,et al.  Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport , 2004 .

[30]  N. Aluru,et al.  Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes , 2003 .

[31]  Petros Koumoutsakos,et al.  On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes , 2003 .

[32]  Jordi Martí,et al.  Molecular dynamics description of a layer of water molecules on a hydrophobic surface , 2002 .

[33]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[34]  M. Bellissent-Funel,et al.  The dynamics of supercritical water: A quasielastic incoherent neutron scattering study , 2000 .

[35]  Y. Shen,et al.  Surface Vibrational Spectroscopic Studies of Hydrogen Bonding and Hydrophobicity , 1994, Science.

[36]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[37]  W. Steele,et al.  Computer simulation of ammonia on graphite. I. Low temperature structure of monolayer and bilayer films , 1990 .

[38]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[39]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[40]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[41]  D. Rapaport Hydrogen bonds in water , 1983 .